M249

Handbook

Contents

1 Greek alphabet 2
2 Notation 2
3 Table of discrete probability distributions 5
4 Table of continuous probability distributions 6
5 Outlines 7
5.1 Background material from the Introduction to statistical modelling 7
5.2 Medical statistics 10
5.3 Time series 14
5.4 Multivariate analysis 17
5.5 Bayesian statistics 22
6 Statistical tables 26

This version of the Handbook is not for use in the examination.

1 Greek alphabet

α	A	Alpha
β	B	Beta
γ	Γ	Gamma
δ	Δ	Delta
ε	E	Epsilon
ζ	Z	Zeta
η	H	Eta
θ	Θ	Theta

ι	I	Iota
κ	K	Kappa
λ	Λ	Lambda
μ	M	Mu
ν	N	Nu
ξ	Ξ	Xi
\circ	O	Omicron
π	Π	Pi

ρ	P	Rho
σ	Σ	Sigma
τ	T	Tau
v	Υ	Upsilon
ϕ	Φ	Phi
χ	X	Chi
ψ	Ψ	Psi
ω	Ω	Omega

2 Notation

General notation

n	number of observations in a sample, or sample size
$x_{1}, x_{2}, \ldots, x_{n}$	data values in a sample
\sum_{x}	summation sign
m	sample mean
s, s^{2}	sample median
$f(x)$	sample standard deviation, sample variance
$p(x)$	probability density function of X
p.d.f.	probability mass function of X
p.m.f.	probability mass function
$E(X), \mu$	expectation or mean of X
$V(X), \sigma^{2}$	variance of X
q_{α}	α-quantile
\simeq	is approximately equal to
\sim	is distributed as
\approx	has approximately the same distribution as
$N\left(\mu, \sigma^{2}\right)$	normal distribution with mean μ and variance σ^{2}
$M(\lambda)$	exponential distribution with parameter λ
$U(a, b)$	continuous uniform distribution on the interval $a \leq x \leq b$
$B(n, p)$	binomial distribution with parameters n and p
Poisson (μ)	Poisson distribution with parameter μ
$\widehat{\theta}$	estimate or estimator of a parameter θ
θ^{-}, θ^{+}	lower and upper confidence limits for θ
H_{0}, H_{1}	null and alternative hypotheses
p value	significance probability
$\operatorname{Cov}(x, y)$	sample covariance of observations on X and Y
$P(Y=y \mid X=x)$	conditional probability that $Y=y$ given that $X=x$
r	Pearson correlation coefficient

Medical statistics

$P(D \mid E) \quad$ probability of disease D, given exposure E
$P(D \mid$ not $E) \quad$ probability of disease D, given no exposure E
$R R \quad$ relative risk
$O R \quad$ odds ratio
$a, b, c, d \quad$ entries in a 2×2 table for a cohort or case-control study
n_{1}, n_{2}
m_{1}, m_{2}
$O R_{i}$
O_{i}
E_{i}
$\chi^{2}(\nu) \quad$ chi-squared distribution on ν degrees of freedom
χ^{2}
$\widehat{O R}_{M H} \quad$ Mantel-Haenszel estimate of the common odds ratio numbers exposed and not exposed in a cohort study numbers with and without disease in a case-control study odds ratio for exposure category i relative to the reference exposure category, or odds ratio for stratum i, or odds ratio for dose level i relative to the lowest dose
observed value for the i th cell of a contingency table
expected value for the i th cell of a contingency table
$f, g \quad$ numbers of discordant pairs in a 1-1 matched case-control study
RCT randomized controlled trial
α
$\gamma \quad$ power (for sample size calculation)
$\pi_{T}, \pi_{C} \quad$ design values for the treatment group (T) and control group (C) (for sample size calculation)

Time series

X_{t}
x_{t}
T
m_{t}
s_{t}
s_{1}, \ldots, s_{T}
W_{t}
$M A(t)$
$S A(t)$
F_{j}
\widehat{x}_{n+1}
α, γ, δ
e_{t}
SSE
r_{k}
ρ_{k}
ACF
α_{k}
PACF
Z_{t}
$\operatorname{AR}(p)$
MA $(q) \quad$ moving average model of order q
$\operatorname{ARMA}(p, q) \quad$ autoregressive moving average model of order (p, q)
$\operatorname{ARIMA}(p, d, q) \quad$ integrated autoregressive moving average model of order (p, d, q)
$d \quad$ order of differencing

Multivariate analysis

p	dimension of a multivariate data set (number of variables)
n	number of observations in a multivariate data set
X	data matrix, with n rows and p columns
X_{j}	j th column of a data matrix, containing values of the j th variable
$x_{i j}$	value of X_{j} for observation $i ;(i, j)$ th element of \mathbf{X}
y	vector with j th element y_{j}
\bar{x}_{j} or \bar{X}_{j}	sample mean of X_{j}
$\overline{\mathrm{x}}$	mean vector of X_{1}, \ldots, X_{p}
s_{j}^{2}	sample variance of X_{j}
$s_{j k}$	sample covariance between X_{j} and X_{k}
S	covariance matrix of X_{1}, \ldots, X_{p}
Z_{j}	standardized (or group-standardized) variable
$\operatorname{Corr}\left(X_{j}, X_{k}\right)$	correlation coefficient between X_{j} and X_{k}
Y_{1}, Y_{k}	first and k th principal components of a data set
α_{j}	loading of the first principal component, or of the first discriminant function, for the j th variable
$\alpha_{k j}$	loading of the k th principal component, or of the k th discriminant function, for the j th variable
$\boldsymbol{\alpha}, \boldsymbol{\alpha}_{k}$	loadings vectors
TV	total variance
PVE	percentage variance explained
CPVE	cumulative percentage variance explained
G	number of groups
n_{g}	number of observations in group g
N	total number of observations in all groups, $N=n_{1}+\cdots+n_{G}$
\bar{x}_{g}	for grouped data: mean of X for group g
$\overline{\bar{x}}, \overline{\bar{X}}$	grand mean of X
s_{g}^{2}	for grouped data: sample variance of X for group g
$V_{w}, V_{w}\left(X_{j}\right)$	within-groups variance
$V_{b}, V_{b}\left(X_{j}\right)$	between-groups variance
$\operatorname{Cov}_{w}\left(X_{i}, X_{j}\right)$	within-groups covariance of X_{i} and X_{j}
$\operatorname{Cov}_{b}\left(X_{i}, X_{j}\right)$	between-groups covariance of X_{i} and X_{j}
W	within-groups covariance matrix
B	between-groups covariance matrix
D_{1}, D_{k}	first and k th discriminant functions
$\operatorname{Sep}(D)$	separation achieved by the linear combination D
a_{j}	loading for a discriminant function based on group-standardized variables
PSA_{j}	percentage separation achieved by the j th discriminant function
CPSA_{j}	cumulative percentage separation achieved by the first j discriminant functions
l_{1}, \ldots, l_{G-1}	cutpoints for an allocation rule involving G groups

Bayesian statistics

$P(A)$	probability of event A
$P(A \mid B)$	probability of A given B
$f(\theta)$	prior density of θ
$L(\theta)$	likelihood of θ given data
$\theta \mid$ data	the parameter θ, conditional on data
$f(\theta \mid$ data $)$	posterior density of θ
$N(a, b)$	normal prior with mean a and variance b
$\operatorname{Beta}(a, b)$	beta prior with parameters a and b
$\operatorname{Gamma}(a, b)$	gamma prior with parameters a and b
$U(a, b)$	uniform prior on the interval $a \leq x \leq b$
τ	precision σ^{-2}, the reciprocal of the variance
(L, U)	equal-tailed $100(1-\alpha) \%$ interval for a parameter θ as used to specify a prior density
(l, u)	$100(1-\alpha) \%$ credible interval for a parameter θ
HPD	highest posterior density
N	number of samples drawn in a simulation
MC	Monte Carlo
MCMC	Markov chain Monte Carlo

3 Table of discrete probability distributions

| Name | Notation | Typical use | Range | Probability mass
 function $p(x)$ | Mean | Variance |
| :--- | :--- | :--- | :--- | :---: | :--- | :---: | :---: |
| Binomial | $B(n, p)$ | Total number of successes in
 n independent Bernoulli trials | $0,1, \ldots, n$ | $\binom{n}{x} p^{x}(1-p)^{n-x}$ | $n p$ | $n p(1-p)$ |
| Poisson | Poisson (μ) | Counts of independently
 occurring events | $0,1, \ldots$ | $\frac{\mu^{x} e^{-\mu}}{x!}$ | μ | μ |
| Discrete
 uniform | Equally likely events labelled
 1 to n | $1, \ldots, n$ | $\frac{1}{n}$ | $\frac{n+1}{2}$ | $\frac{n^{2}-1}{12}$ | |

4 Table of continuous probability distributions

Name	Notation	Typical use	Range	Probability density function $f(x)$	Location	Variance
Normal	$N\left(\mu, \sigma^{2}\right)$	Measurements clustered symmetrically around a mean	$-\infty<x<\infty$	$\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)$	$\begin{aligned} & \text { mean }=\mu \\ & \text { median }=\mu \\ & \text { mode }=\mu \end{aligned}$	σ^{2}
Standard normal	$N(0,1)$	Calculation of z-intervals, sample size estimation	$-\infty<x<\infty$	$\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right)$	$\begin{aligned} & \text { mean }=0 \\ & \text { median }=0 \\ & \text { mode }=0 \end{aligned}$	1
Continuous uniform	$U(a, b)$	Equally likely values on the interval $[a, b]$; flat priors	$a \leq x \leq b$	$\frac{1}{b-a}$	mean $=\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Exponential	$M(\lambda)$	Time intervals between successive events	$x \geq 0$	$\lambda e^{-\lambda x}$	$\begin{aligned} & \text { mean }=\frac{1}{\lambda} \\ & \text { mode }=0 \end{aligned}$	$\frac{1}{\lambda^{2}}$
Chisquared	$\chi^{2}(\nu)$	Null distribution of tests for no association, no interaction, no linear association	$x>0$	$c x^{\nu / 2-1} e^{-x / 2}$	mean $=\nu$	2ν
Beta	$\operatorname{Beta}(a, b)$	Prior for a probability or proportion	$0 \leq x \leq 1$	$c x^{a-1}(1-x)^{b-1}$ where c is a constant	$\begin{aligned} & \text { mean }=\frac{a}{a+b} \\ & \text { mode }=\left\{\begin{array}{l} \frac{a-1}{a+b-2} \\ 0 \\ 1 \end{array}\right. \end{aligned}$	$\begin{aligned} & \frac{a b}{(a+b)^{2}(a+b+1)} \\ & 1 \text { and } b>1 \\ & a<1 \\ & b<1 \end{aligned}$
Gamma	$\operatorname{Gamma}(a, b)$	Prior for a non-negative parameter	$x \geq 0$	$c x^{a-1} e^{-b x}$ where c is a constant	$\begin{aligned} & \text { mean }=\frac{a}{b} \\ & \text { mode }=\left\{\begin{array}{l} \frac{a-1}{b} \\ 0 \end{array}\right. \end{aligned}$	$\frac{a}{b^{2}}$

5 Outlines

5.1 Background material from the Introduction to statistical modelling

Graphical and numerical summaries

1 Useful graphical representations of statistical data include bar charts, histograms and scatterplots. Bar charts are generally used with categorical data, or discrete numerical data. Histograms are generally used with continuous data, by grouping the data into intervals or bins. Scatterplots are used to display the relationship between two numerical variables.
2 Measures of location include the mean, median and mode. If the n items in a data set are denoted $x_{1}, x_{2}, \ldots, x_{n}$, then the sample mean, which is denoted \bar{x}, is given by

$$
\bar{x}=\frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i} .
$$

3 The median of a sample of data with an odd number of values is the middle value of the data set when the values are placed in order of increasing size. If the sample size is even, then the median is halfway between the two middle values.

4 The mode of a set of categorical data is the most frequently occurring (or modal) value. The term mode is also used to describe a clear peak in a histogram or a bar chart of a set of numerical data.

5 Measures of dispersion describe the variation within a sample around its average value. They include the standard deviation and the variance. If the n items in a data set with sample mean \bar{x} are denoted $x_{1}, x_{2}, \ldots, x_{n}$, then the sample standard deviation, denoted s, is given by

$$
s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} .
$$

The quantity s^{2} is known as the sample variance.
6 The skewness of a sample is a measure of departure from symmetry. If the data are symmetrically distributed around the median, then the skewness is zero. If there is a relatively long tail of values to the right of the median, then the data are said to be right-skew, or positively skewed. If there is a relatively long tail of values to the left of the median, then the data are said to be left-skew, or negatively skewed.

Probability models

7 A probability model for a continuous random variable X is specified by the probability density function (p.d.f.) $f(x)$ of the random variable. A probability model for a discrete random variable X is specified by the probability mass function (p.m.f.) $p(x)$ of the random variable. Details of specific p.d.f.s and p.m.f.s are given in the tables in Sections 3 and 4 of this Handbook.

8 The population mean of a random variable X is denoted μ or $E(X)$; it is also called the expectation or expected value of X. The population variance of X is denoted σ^{2} or $V(X)$; it is equal to $E(X-\mu)^{2}$. The population standard deviation is σ.

9 The $\boldsymbol{\alpha}$-quantile of a continuous random variable X is the value q_{α} such that

$$
\alpha=P\left(X \leq q_{\alpha}\right) .
$$

The population median of X is the 0.5 -quantile. The lower quartile of X is the 0.25 -quantile, and the upper quartile of X is the 0.75 -quantile.

10 The central limit theorem states that if n independent random observations are taken from a population with mean μ and variance σ^{2}, then for large n the distribution of their mean $\widehat{\mu}$ (also called the sampling distribution of the mean) is approximately normal with mean μ and variance σ^{2} / n. The standard deviation of the sampling distribution, which is equal to σ / \sqrt{n}, is called the standard error of $\widehat{\mu}$.

Confidence intervals

11 A $100(1-\alpha) \%$ confidence interval $\left(\mu^{-}, \mu^{+}\right)$for a population mean μ, calculated from a sample of size n with sample mean \bar{x}, may be used to represent the uncertainty in the estimate \bar{x} of μ. The confidence interval may be interpreted in two ways - using the repeated experiments interpretation (based on a large number of repetitions of the experiment with samples of size n), and using the plausible range interpretation (based on the probability of observing a sample mean as extreme as \bar{x}, if μ were to take values outside the confidence interval). These interpretations are equivalent.

12 Given a random sample of size n from a population with mean μ, an approximate $100(1-\alpha) \%$ confidence interval for μ is given by the z-interval

$$
\left(\mu^{-}, \mu^{+}\right)=\left(\widehat{\mu}-z \frac{s}{\sqrt{n}}, \widehat{\mu}+z \frac{s}{\sqrt{n}}\right)
$$

where $\widehat{\mu}$ is the sample mean, s is the sample standard deviation, and z is $q_{1-\alpha / 2}$, the ($1-\alpha / 2$)-quantile of the standard normal distribution.
13 An approximate $100(1-\alpha) \%$ confidence interval for a parameter θ is given by the z-interval

$$
\left(\theta^{-}, \theta^{+}\right)=(\widehat{\theta}-z \widehat{\sigma}, \widehat{\theta}+z \widehat{\sigma})
$$

where $\widehat{\theta}$ is the sample estimate of $\theta, \widehat{\sigma}$ is the estimated standard error of the estimator $\widehat{\theta}$, and z is $q_{1-\alpha / 2}$, the ($1-\alpha / 2$)-quantile of the standard normal distribution.
14 When θ is a binomial proportion $p, \widehat{\theta}$ is its sample estimate \widehat{p} and the standard error of \widehat{p} may be estimated by

$$
\widehat{\sigma}=\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} .
$$

Significance tests

15 A significance test may be used to evaluate the strength of evidence against a null hypothesis H_{0} of the form

$$
H_{0}: \theta=\theta_{0} .
$$

The corresponding alternative hypothesis H_{1} is

$$
H_{1}: \theta \neq \theta_{0}
$$

16 The strength of evidence against H_{0} is quantified by the significance probability or \boldsymbol{p} value. The procedure for carrying out a significance test is as follows.
\diamond Determine the null hypothesis H_{0} and the alternative hypothesis H_{1}.
\diamond Choose a suitable test statistic and determine the null distribution of the test statistic.
\diamond Calculate the observed value of the test statistic and identify the values that are at least as extreme as the observed value in relation to H_{0}.
\diamond Calculate the significance probability p.
\diamond Interpret the significance probability and report the results.
17 The following table provides a rough guide for interpreting p values.

Significance probability p	Rough interpretation
$p>0.10$	little evidence against H_{0}
$0.10 \geq p>0.05$	weak evidence against H_{0}
$0.05 \geq p>0.01$	moderate evidence against H_{0}
$p \leq 0.01$	strong evidence against H_{0}

Correlation and association

18 Two random variables are said to be related, or associated, if knowing something about the value of one variable tells you something about the value of the other.

19 A measure of the strength of a linear association is provided by the (Pearson) correlation coefficient. This is based on the sample covariance. For observations $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ on two random variables X and Y with sample means \bar{x} and \bar{y} and sample standard deviations s_{x} and s_{y}, the sample covariance is

$$
\operatorname{Cov}(x, y)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

and the correlation coefficient is

$$
r=\frac{\operatorname{Cov}(x, y)}{s_{x} s_{y}}
$$

20 Conditional probabilities are probabilities of the form 'probability that $Y=y$, given that $X=x^{\prime}$, and are written

$$
P(Y=y \mid X=x) .
$$

21 Two discrete random variables X and Y are independent if, for all values of x and y,

$$
P(Y=y \mid X=x)=P(Y=y)
$$

If X and Y are not independent, they are said to be dependent, or related, or associated.

5.2 Medical statistics

Cohort and case-control studies

1 A cohort study of the association between an exposure E and a disease D typically includes one group with exposure E (the exposed group) and one group without exposure E (the control group). The groups are followed over time and the occurrences of disease D in each group are identified.

2 A case-control study of the association between an exposure E and a disease D typically includes a group of cases with the disease D and a group of controls without the disease D, who are otherwise comparable to the cases. The past exposures of the cases and controls are determined and the occurrences of exposure E are identified.
3 The risk of disease D, given exposure E, is $P(D \mid E)$. The relative risk is

$$
R R=\frac{P(D \mid E)}{P(D \mid \operatorname{not} E)}
$$

4 The odds of disease D, given exposure E, is

$$
O D(D \mid E)=\frac{P(D \mid E)}{P(\operatorname{not} D \mid E)}
$$

The odds ratio is

$$
O R=\frac{P(D \mid E) \times P(\operatorname{not} D \mid \operatorname{not} E)}{P(\operatorname{not} D \mid E) \times P(D \mid \operatorname{not} E)}
$$

5 Data from a cohort study may be presented in a table as follows.

	Disease outcome		
Exposure category	D	not D	Total
E	a	b	n_{1}
not E	c	d	n_{2}

The sample estimate of the relative risk $R R$ from a cohort study is

$$
\widehat{R R}=\frac{a / n_{1}}{c / n_{2}}
$$

An approximate $100(1-\alpha) \%$ confidence interval for the relative risk $R R$ is

$$
\left(R R^{-}, R R^{+}\right)=(\widehat{R R} \times \exp (-z \widehat{\sigma}), \widehat{R R} \times \exp (z \widehat{\sigma}))
$$

where z is the $(1-\alpha / 2)$-quantile of the standard normal distribution, and

$$
\widehat{\sigma}=\sqrt{\frac{1}{a}-\frac{1}{n_{1}}+\frac{1}{c}-\frac{1}{n_{2}}} .
$$

Table 2 of the statistical tables contains quantiles for the standard normal distribution.

6 Data from a case-control study may be presented in a table as follows.

	Disease outcome	
Exposure category	D (cases)	not D (controls)
E	a	b
not E	c	d
Total	m_{1}	m_{2}

The sample estimate of the odds ratio $O R$ from a case-control study or a cohort study is

$$
\widehat{O R}=\frac{a \times d}{b \times c}
$$

An approximate $100(1-\alpha) \%$ confidence interval for the odds ratio $O R$ is

$$
\left(O R^{-}, O R^{+}\right)=(\widehat{O R} \times \exp (-z \widehat{\sigma}), \widehat{O R} \times \exp (z \widehat{\sigma}))
$$

where z is the $(1-\alpha / 2)$-quantile of the standard normal distribution, and

$$
\widehat{\sigma}=\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}} .
$$

7 In studies with more than one exposure category, one category is chosen as the reference exposure category and calculations are undertaken relative to this reference category.
8 When data are arranged in an $r \times c$ table, an approximate test for no association between the variables uses the chi-squared test statistic

$$
\chi^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

where the sum is taken over all $r \times c$ cells of the table, O_{i} is the observed frequency for the i th cell, and E_{i} is the expected frequency for the i th cell. The expected frequency for a cell is given by

$$
\text { expected frequency }=\frac{\text { row total } \times \text { column total }}{\text { overall total }}
$$

When the null hypothesis of no association is true,

$$
\chi^{2} \approx \chi^{2}((r-1)(c-1))
$$

The approximation is adequate provided that all the expected frequencies are at least 5. When this is not the case, Fisher's exact test can be used.

Bias, confounding and causation

9 A study is biased if some aspects of the design, sampling, data collection or analysis method produce results that systematically overestimate or underestimate the strength of association. In particular, bias may arise from selection bias, information bias or confounding.

10 Confounding may arise if both the exposure E and the disease D are associated with a third variable C, known as a confounder. Confounding bias may be explored by stratifying the data according to the levels of the confounder.

Table 2 of the statistical tables contains quantiles for the standard normal distribution.

Table 3 of the statistical tables contains quantiles for chi-squared distributions.

11 Data from stratum i of a cohort study or case-control study stratified according to the levels of a variable C may be presented in a table as follows.

Exposure category	Disease/Cases	No disease/Controls
Exposed	a_{i}	b_{i}
Not exposed	c_{i}	d_{i}

If the underlying stratum-specific odds ratios are the same for all strata, then their common value $O R$ is estimated by the Mantel-Haenszel odds ratio:

$$
\widehat{O R}_{M H}=\frac{\sum a_{i} d_{i} / N_{i}}{\sum b_{i} c_{i} / N_{i}},
$$

where $N_{i}=a_{i}+b_{i}+c_{i}+d_{i}$, and the summations are over all the strata.
12 In a matched case-control study, the controls in each matched case-control set are selected so that they match the case with respect to the confounding variables.

13 The case-control pairs from a $\mathbf{1} \mathbf{- 1}$ matched case-control study may be presented in a table as follows.

Controls

		Exposed	Not exposed
Cases	Exposed	e	f
	Not exposed	g	h

The Mantel-Haenszel estimate of the odds ratio is

$$
\widehat{O R}_{M H}=\frac{f}{g}
$$

An approximate $100(1-\alpha) \%$ confidence interval for the odds ratio is

$$
\left(O R^{-}, O R^{+}\right)=\left(\widehat{O R}_{M H} \times \exp (-z \widehat{\sigma}), \widehat{O R} \times \exp (z \widehat{\sigma})\right)
$$

where z is the $(1-\alpha / 2)$-quantile of the standard normal distribution, and

$$
\widehat{\sigma}=\sqrt{\frac{1}{f}+\frac{1}{g}}
$$

14 McNemar's test for no association in a 1-1 matched case-control study is based on the test statistic

$$
\chi^{2}=\frac{(|f-g|-1)^{2}}{f+g}
$$

Under the null hypothesis of no association, $\chi^{2} \approx \chi^{2}(1)$.
15 The presence of an interaction between a stratifying variable C and the association between an exposure E and a disease outcome D may be investigated using a significance test of homogeneity.
If there are k strata, the null hypothesis is $O R_{1}=O R_{2}=\cdots=O R_{k}$, where $O R_{i}$ is the odds ratio for stratum i. Tarone's test for homogeneity is based on a test statistic whose distribution is approximately $\chi^{2}(k-1)$ under the null hypothesis.

16 Association does not imply not causation. Bradford Hill's criteria for causation may help in assessing whether an association is causal.
17 A dose is a quantified exposure. A dose-response relationship exists between an exposure E and a disease D if the risk (or odds) of disease varies according to the dose of that exposure.

Table 2 of the statistical tables contains quantiles for the standard normal distribution.

Table 3 of the statistical tables contains quantiles for $\chi^{2}(1)$.

Table 3 of the statistical tables contains quantiles for chi-squared distributions.

18 The presence of a dose-response relationship may be investigated using the chi-squared test for no linear trend. The null hypothesis for this significance test is that the log odds of disease does not increase or decrease linearly with the dose. Under the null hypothesis, the distribution of the test statistic is approximately $\chi^{2}(1)$.

Randomized controlled trials and the medical literature

19 A randomized controlled trial is a cohort study in which participants are randomly allocated to treatment and control groups. Stratified randomization, in which participants are randomized by blocks, may be used to improve balance in the characteristics of the patients allocated to the different groups. Bias is further reduced by using concealment procedures such as double blinding or single blinding.
20 The flow chart of the trial documents the numbers of participants included and excluded at each stage of the trial. The recommended method of analysis of randomized controlled trials is by intention to treat. In an intention-to-treat analysis, the groups analysed are as close as possible to those randomized. An alternative method of analysis is per protocol. In a per-protocol analysis, only participants who complete the treatment to which they were randomized are included.

21 Pharmaceutical drugs are evaluated in clinical trials. The evaluation progresses through four phases. Phase III studies are always randomized controlled trials. An independent Data Monitoring Committee reviews the data and can halt a trial on ethical grounds.
22 The sample size required for a randomized controlled trial to compare the effect of treatment on a disease D is derived within the framework of fixed-level testing. The null and alternative hypotheses may be written as

$$
H_{0}: p_{T}=p_{C}, \quad H_{1}: p_{T} \neq p_{C}
$$

where p_{T} is the probability of disease in the treatment group, and p_{C} is the probability of disease in the control group.
23 A Type I error is said to occur if the null hypothesis H_{0} is rejected when it is true. A Type II error is said to occur if the null hypothesis H_{0} is not rejected when it is false.

The significance level of the test, α, is the probability of a Type I error. The power of the test, γ, is the probability of avoiding a Type II error.
24 To calculate the sample size for a trial with two groups of equal size, the design values π_{T} and π_{C}, the significance level α and the power γ must be specified. The sample size n for each trial group is given approximately by

$$
n=\frac{2\left(q_{1-\alpha / 2}+q_{\gamma}\right)^{2} \pi_{0}\left(1-\pi_{0}\right)}{\left(\pi_{T}-\pi_{C}\right)^{2}}
$$

where $q_{1-\alpha / 2}$ and q_{γ} denote, respectively, the $(1-\alpha / 2)$-quantile and the γ-quantile of the standard normal distribution, and $\pi_{0}=\left(\pi_{T}+\pi_{C}\right) / 2$.
25 The power γ available in a trial with two groups each of size n is obtained from q_{γ}, the γ-quantile of the standard normal distribution, which is given by the expression

$$
q_{\gamma}=\left|\pi_{T}-\pi_{C}\right| \sqrt{\frac{n}{2 \pi_{0}\left(1-\pi_{0}\right)}}-q_{1-\alpha / 2}
$$

The notation in this expression is the same as that used in $\mathbf{2 4}$.

Table 3 of the statistical tables contains quantiles for $\chi^{2}(1)$.

26 Evidence from all available studies, or all available studies of a particular type, may be reviewed together as part of a systematic review. The selection of studies in such a review is particularly important in order to avoid publication bias. Sometimes a quantitative assessment of the strength of evidence from several studies may be possible by combining their results in a meta-analysis.
27 In a meta-analysis, the results of several studies are combined to obtain a pooled odds ratio and confidence interval, for example using the Mantel-Haenszel odds ratio (see 11). The presence of heterogeneity between studies may be investigated using Tarone's test for homogeneity (see 15). A forest plot is used to display the results of a meta-analysis.
28 Medical papers often contain statistical analyses. A typical medical paper includes the following sections: Abstract, Introduction, Methods, Results, Discussion.

5.3 Time series

Decomposition models

1 A time series is a collection of observations X_{t} on some random variable X at equally-spaced times $1,2, \ldots, t, t+1, \ldots$ A time plot is a graph of the observed values x_{t} against t.

2 A cycle is a regular pattern that repeats at fixed intervals. The time interval between cycles is the period. A cycle whose period is determined by the natural clock is seasonal. A seasonal cycle with period one year is annual. Seasonality may be displayed using a seasonal plot.
3 The additive decomposition model for a time series X_{t} is

$$
X_{t}=m_{t}+s_{t}+W_{t}, \quad t=1,2, \ldots
$$

where m_{t} is the trend component, s_{t} is the seasonal component of period T, and W_{t} is the irregular (or random) component, sometimes also described as noise. The seasonal component satisfies

$$
\begin{aligned}
& s_{t}=s_{t+T} \quad \text { for all } t, \\
& s_{1}+\cdots+s_{T}=0
\end{aligned}
$$

The distinct values s_{1}, \ldots, s_{T} are the seasonal factors.
The irregular component W_{t} has mean 0 and variance σ^{2} :

$$
E\left(W_{t}\right)=0, \quad V\left(W_{t}\right)=\sigma^{2}
$$

4 The multiplicative decomposition model for a time series X_{t} which takes only positive values is

$$
X_{t}=m_{t} \times s_{t} \times W_{t}
$$

The seasonal component s_{t} satisfies

$$
\begin{aligned}
& s_{t}=s_{t+T} \quad \text { for all } t, \\
& s_{1} \times s_{2} \times \cdots \times s_{T}=1
\end{aligned}
$$

5 The simple moving average of order $2 q+1$ centred on t is given by the transformation

$$
M A(t)=\frac{1}{2 q+1}\left(X_{t-q}+\cdots+X_{t}+\cdots+X_{t+q}\right)
$$

6 A weighted moving average of order $2 q+1$ has the form

$$
M A(t)=a_{-q} X_{t-q}+\cdots+a_{-1} X_{t-1}+a_{0} X_{t}+a_{1} X_{t+1}+\cdots+a_{q} X_{t+q}
$$

where the weights $a_{j}, j=-q,-q+1, \ldots, q$, add up to 1 .

7 Simple and weighted moving averages may be used for smoothing a time series. The order of the moving average should be chosen so as to avoid both over-smoothing and under-smoothing the time series.

8 For a seasonal time series X_{t}, which may be described by an additive model, and for which the seasonal period is T (an even number), the seasonal component s_{t} may be estimated as follows.
First, the series is smoothed using a suitable weighted moving average $S A(t)$. Then the series of differences $y_{t}=x_{t}-S A(t)$ is obtained, and the raw seasonal factors $F_{j}, j=1, \ldots, T$, are calculated by averaging the values y_{t} for each season. Finally, the seasonal factors are estimated by

$$
\widehat{s}_{j}=F_{j}-\bar{F}, \quad j=1, \ldots, T
$$

where \bar{F} is the average of the raw seasonal factors.
9 A time series is seasonally adjusted if its seasonal component has been estimated and removed, leaving only a trend component and an irregular component.

Forecasting

10 Forecasting is the process of predicting future values of a time series based on the past values of the time series. A forecast \widehat{x}_{n+1} of X_{n+1} based on $x_{n}, x_{n-1}, x_{n-2}, \ldots$ is called a 1 -step ahead forecast of X_{n+1}.
11 If a time series X_{t} is described by an additive model with constant level and no seasonality, then 1-step ahead forecasts may be obtained by simple exponential smoothing using the formula

$$
\widehat{x}_{n+1}=\alpha x_{n}+(1-\alpha) \widehat{x}_{n},
$$

where x_{n} is the observed value at time n, \widehat{x}_{n} and \widehat{x}_{n+1} are the 1 -step ahead forecasts of X_{n} and X_{n+1}, and α is a smoothing parameter, $0 \leq \alpha \leq 1$. The method requires an initial value \widehat{x}_{1}.

12 The 1-step ahead forecast error is the difference between the observed value and the 1 -step ahead forecast of $X_{t}: e_{t}=x_{t}-\widehat{x}_{t}$. The sum of squared errors, or $S S E$, is given by

$$
S S E=\sum_{t=1}^{n} e_{t}^{2}=\sum_{t=1}^{n}\left(x_{t}-\widehat{x}_{t}\right)^{2}
$$

13 If a time series X_{t} is described by an additive model with a linear trend component and no seasonality, then 1-step ahead forecasts may be obtained by Holt's exponential smoothing. There are two smoothing parameters: α for the level and γ for the slope.

If in addition the time series has a seasonal component, forecasts may be obtained using Holt-Winters exponential smoothing. There are three smoothing parameters: α for the level, γ for the slope and δ for the seasonal component.

For all exponential smoothing methods, optimal values of the smoothing parameters are obtained by minimizing the $S S E$.
14 Suppose that X_{t} is a time series with n observed values $x_{1}, x_{2}, \ldots, x_{n}$. The time series lagged by \boldsymbol{k} places is the time series with X_{t-k} in position k. The first k positions of the lagged series comprise missing values.

15 The sample autocorrelation at lag \boldsymbol{k} is a correlation coefficient r_{k} calculated between a time series and a copy of itself, lagged by k places. It is calculated using the $n-k$ pairs of points $\left(x_{1}, x_{k+1}\right),\left(x_{2}, x_{k+2}\right), \ldots$, $\left(x_{n-k}, x_{n}\right)$.

16 The population autocorrelations $\rho_{k}, k=1,2, \ldots$, define the autocorrelation function, or ACF. Under the null hypothesis $\rho_{k}=0$, the distribution of the sample autocorrelation calculated from a time series with n time points is approximately normal with mean 0 and variance $1 / n$.

17 The sample autocorrelations may be displayed on a correlogram or sample ACF plot. Significance bounds are horizontal lines plotted at positions $\pm 1.96 / \sqrt{n}$ on the correlogram.

18 For a fixed number k of lags, the null hypothesis

$$
H_{0}: \rho_{1}=\rho_{2}=\cdots=\rho_{k}=0
$$

may be tested using a portmanteau test such as the Ljung-Box test.
19 A $100(1-\alpha) \%$ prediction interval for X_{n+1}, given observed values up to and including x_{n}, is an interval with probability $1-\alpha$ of containing X_{n+1}.
20 Suppose that a 1-step ahead forecast \widehat{x}_{n+1} for X_{n+1} has been obtained, together with the $S S E$, the sum of squared forecast errors at times $1,2, \ldots, n$. An approximate $100(1-\alpha) \%$ prediction interval for X_{n+1} is given by

$$
\left(\widehat{x}_{n+1}-z \sqrt{\frac{S S E}{n}}, \widehat{x}_{n+1}+z \sqrt{\frac{S S E}{n}}\right)
$$

where z is the $(1-\alpha / 2)$-quantile of the standard normal distribution. The assumptions required are that the forecast errors are normally distributed with mean zero and constant variance, and that the autocorrelations between the forecast errors are zero at lags $k \geq 1$.
21 A time series Z_{t} is said to be white noise if Z_{t} is normally distributed with mean zero and constant variance σ^{2}, and the autocorrelations at all lags $k \geq 1$ are zero.

ARIMA models

22 A time series X_{t} is stationary in mean if it has constant mean, $E\left(X_{t}\right)=\mu$.
It is stationary in variance if it has constant variance, $V\left(X_{t}\right)=\sigma^{2}$. It is stationary in correlation if for all k, ρ_{k}, the autocorrelation between X_{t} and X_{t-k}, depends only on the lag k. The time series is stationary if it is stationary in mean, in variance and in correlation.

23 The partial autocorrelation at $\operatorname{lag} k, \alpha_{k}$, is a measure of the direct dependence between X_{t} and X_{t-k}. The partial autocorrelations α_{k}, $k=0,1,2, \ldots$, define the partial autocorrelation function, or PACF. The partial correlogram, or sample PACF plot, is a bar chart of the sample PACF.

24 Let X_{t} be a stationary time series with mean μ. The autoregressive model of order \boldsymbol{p}, or $\mathbf{A R}(\boldsymbol{p})$ model, has the form

$$
X_{t}-\mu=\beta_{1}\left(X_{t-1}-\mu\right)+\beta_{2}\left(X_{t-2}-\mu\right)+\cdots+\beta_{p}\left(X_{t-p}-\mu\right)+Z_{t}
$$

where $\beta_{1}, \beta_{2}, \ldots, \beta_{p}$ are parameters to be estimated, and Z_{t} is white noise with mean 0 and variance σ^{2}.

25 The ACF for an $\operatorname{AR}(1)$ model is given by $\rho_{k}=\beta_{1}^{k}$ for $k \geq 0$. The ACF for an $\mathrm{AR}(p)$ model tails off to zero in magnitude, either exponentially or in a damped sinusoidal pattern, as the lag increases.
The PACF for an $\operatorname{AR}(p)$ model satisfies $\alpha_{p}=\beta_{p}$, and $\alpha_{k}=0$ for lags $k>p$.
26 Let X_{t} be a stationary time series with mean μ. The moving average model of order \boldsymbol{q}, or $\operatorname{MA}(\boldsymbol{q})$ model, has the form

$$
X_{t}-\mu=Z_{t}-\theta_{1} Z_{t-1}-\cdots-\theta_{q} Z_{t-q},
$$

where $\theta_{1}, \theta_{2}, \ldots, \theta_{q}$ are parameters to be estimated, and Z_{t} is white noise with mean 0 and variance σ^{2}.

Table 2 of the statistical tables contains quantiles for the standard normal distribution.

27 The ACF for an MA (q) model satisfies

$$
\rho_{q}=\frac{-\theta_{q}}{1+\theta_{1}^{2}+\cdots+\theta_{q}^{2}},
$$

and $\rho_{k}=0$ for $k>q$.
The PACF for an MA (q) model tails off to zero in magnitude, either exponentially or in a damped sinusoidal pattern, as the lag increases.
28 Let X_{t} be a stationary time series with mean zero. The autoregressive moving average model of order $(\boldsymbol{p}, \boldsymbol{q})$, or $\operatorname{ARMA}(\boldsymbol{p}, \boldsymbol{q})$ model, has the form

$$
X_{t}-\mu=\beta_{1}\left(X_{t-1}-\mu\right)+\cdots+\beta_{p}\left(X_{t-p}-\mu\right)+Z_{t}-\theta_{1} Z_{t-1}-\cdots-\theta_{q} Z_{t-q}
$$

An integrated moving average model of order (p, d, q), or
ARIMA $(\boldsymbol{p}, \boldsymbol{d}, \boldsymbol{q})$ model, is an $\operatorname{ARMA}(p, q)$ model applied to a time series after differencing of order d.

29 The key features of ARMA models are summarized in the table below.

Model	Notation	ACF	PACF
White noise	ARMA $(0,0)$	Zero at lags >0	Zero at lags >0
Autoregressive	ARMA $(p, 0)$	Tails off to zero	Zero after lag p
Moving average	ARMA $(0, q)$	Zero after lag q	Tails off to zero
Mixed	ARMA (p, q)	Tails off to zero	Tails off to zero

30 The principle of parsimony in selecting an ARIMA model is to keep the value of $p+q$ to a minimum.
31 The steps involved in selecting an ARIMA model for a non-seasonal time series are as follows.
\diamond Check than an additive model is appropriate. If it is not appropriate, then transform the series to obtain a series that can be represented by an additive model.
\diamond Identify the order of differencing, d, required to obtain stationarity.
\diamond Identify those $\operatorname{ARIMA}(p, d, q)$ models that are consistent with the correlogram and partial correlogram for the stationary series.
\diamond Choose the model(s) with the lowest value of $p+q$.
32 After fitting an ARIMA model, its adequacy should be checked, as follows.
\diamond Check the fit of the model by plotting the time series and the 1-step ahead forecasts on a multiple time plot.
\diamond Verify that the distribution of the forecast errors is approximately normal with mean zero and constant variance.
\diamond Use the correlogram for the forecast errors and the Ljung-Box test (see 18) to check that the forecast errors are uncorrelated.

5.4 Multivariate analysis

Describing and displaying multivariate data

1 A multivariate data set comprises observations on two or more random variables. A bivariate data set has two variables. The number of variables, p, is the dimension of the data set. An observation is the set of p measurements made on one sampled unit. The variables X_{1}, \ldots, X_{p} form the columns of the $n \times p$ data matrix \mathbf{X}, where n is the number of observations.

2 Multivariate data may be displayed using two-dimensional scatterplots, three-dimensional scatterplots, matrix scatterplots and profile plots.

3 The mean vector for a data set with n observations and p variables X_{1}, \ldots, X_{p} is $\overline{\mathbf{x}}=\left(\bar{x}_{1}, \ldots, \bar{x}_{p}\right)$, where \bar{x}_{j} is the sample mean of X_{j},

$$
\bar{x}_{j}=\frac{1}{n} \sum_{i=1}^{n} x_{i j}
$$

4 The sample covariance between X_{j} and X_{k} is

$$
s_{j k}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i k}-\bar{x}_{k}\right) .
$$

The covariance between a variable X_{j} and itself is the sample variance of X_{j}, that is, $s_{j j}=s_{j}^{2}$.
5 The variance-covariance matrix, or covariance matrix, of X_{1}, \ldots, X_{p} is a square matrix \mathbf{S} with p rows and p columns. Element (j, k) of \mathbf{S} is $s_{j k}$, the sample covariance between X_{j} and X_{k}. The diagonal element (j, j) is s_{j}^{2}, the sample variance of X_{j}.
6 In standardization, each variable X_{j} is transformed separately in such a way that the transformed variable Z_{j} has mean 0 and variance 1 . For observation i, the value $x_{i j}$ of X_{j} is transformed to obtain the value $z_{i j}$ of Z_{j}, as follows:

$$
z_{i j}=\frac{x_{i j}-\bar{x}_{j}}{s_{j}}
$$

where \bar{x}_{j} is the sample mean and s_{j} is the sample standard deviation of X_{j}.
The numbers $z_{i j}$ do not have any units associated with them, so the standardized variable Z_{j} is scale-free.

7 The correlation matrix of X_{1}, \ldots, X_{p} is the covariance matrix of the standardized variables Z_{1}, \ldots, Z_{p}. Element (j, k) is the correlation coefficient between X_{j} and X_{k}, denoted $\operatorname{Corr}\left(X_{j}, X_{k}\right)$. The diagonal elements of the correlation matrix are all equal to 1 .

Reducing dimension

8 Two approximations Y_{1} and Y_{2} to a multivariate data set are equivalent if constants $c_{1} \neq 0$ and c_{2} can be found such that $Y_{2}=c_{1} Y_{1}+c_{2}$.
9 For a data set of dimension p with variables X_{1}, \ldots, X_{p}, the (first) principal component of the data, denoted Y, is the linear combination

$$
Y=\sum_{j=1}^{p} \alpha_{j}\left(X_{j}-\bar{X}_{j}\right)
$$

where the loadings vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ is chosen so that the variance of Y is maximized, subject to the constraint

$$
\sum_{j=1}^{p} \alpha_{j}^{2}=1
$$

10 For a data set with p variables X_{1}, \ldots, X_{p}, the variance of the linear combination

$$
Y=\sum_{j=1}^{p} \alpha_{j}\left(X_{j}-\bar{X}_{j}\right)
$$

can be calculated from the variances and covariances of the original variables using the formula

$$
V(Y)=\sum_{j=1}^{p} \alpha_{j}^{2} V\left(X_{j}\right)+2 \sum_{j, k: k>j} \alpha_{j} \alpha_{k} \operatorname{Cov}\left(X_{j}, X_{k}\right)
$$

11 For a multivariate data set with p variables X_{1}, \ldots, X_{p}, the total variance, $T V$, is

$$
\mathrm{TV}=\sum_{j=1}^{p} V\left(X_{j}\right)
$$

The percentage variance explained, PVE, by a linear combination Y is

$$
\mathrm{PVE}=\frac{V(Y)}{\mathrm{TV}} \times 100 \%
$$

12 For a data set of dimension p with variables X_{1}, \ldots, X_{p}, the \boldsymbol{k} th principal component of the data, denoted Y_{k}, is the linear combination

$$
Y_{k}=\sum_{j=1}^{p} \alpha_{k j}\left(X_{j}-\bar{X}_{j}\right)
$$

where the loadings vector $\boldsymbol{\alpha}_{k}=\left(\alpha_{k 1}, \ldots, \alpha_{k p}\right)$ is chosen so that the variance of Y_{k} is maximized, subject to the following constraints:

$$
\sum_{j=1}^{p} \alpha_{k j}^{2}=1
$$

Y_{k} is uncorrelated with Y_{1}, \ldots, Y_{k-1}.
13 In some circumstances, it is preferable, or even essential, to calculate principal components using standardized data. In this case, the k th principal component has the form

$$
Y_{k}=\sum_{j=1}^{p} \alpha_{k j} Z_{j} .
$$

14 The cumulative percentage variance explained, CPVE, by the first k principal components is given by

$$
\mathrm{CPVE}=\frac{V\left(Y_{1}\right)+\cdots+V\left(Y_{k}\right)}{\mathrm{TV}} \times 100 \%
$$

15 Kaiser's criterion for choosing the number of principal components is to retain components with variance greater than the average of the variances of the original variables.
In a scree plot, the elbow is the point at which the plot flattens out. The point preceding the elbow indicates the last component to be retained.

Discrimination

16 Suppose that a multivariate data set comprises observations on G groups, that n_{g} is the size of group g, and that \bar{x}_{g} is the mean of a variable X in group g. Let N denote the total number of observations in the G groups: $N=n_{1}+\cdots+n_{G}$. The grand mean of X is denoted $\overline{\bar{x}}$ and is given by

$$
\overline{\bar{x}}=\frac{1}{N} \sum_{g=1}^{G} n_{g} \bar{x}_{g}
$$

17 Suppose that the variance of X in group g is s_{g}^{2}. The between-groups variance of X, denoted V_{b}, and the within-groups variance of X, denoted V_{w}, are given by

$$
\begin{aligned}
V_{b} & =\frac{1}{N-G} \sum_{g=1}^{G} n_{g}\left(\bar{x}_{g}-\overline{\bar{x}}\right)^{2}, \\
V_{w} & =\frac{1}{N-G} \sum_{g=1}^{G}\left(n_{g}-1\right) s_{g}^{2}
\end{aligned}
$$

The separation achieved by a variable X is given by the ratio of the between-groups variance to the within-groups variance of X :

$$
\text { separation }=\frac{V_{b}}{V_{w}}
$$

18 The within-groups covariance for a pair of variables X_{i} and X_{j}, which is denoted $\operatorname{Cov}_{w}\left(X_{i}, X_{j}\right)$, is the weighted average of the covariances of X_{i} and X_{j} calculated for each of the groups separately. The between-groups covariance of variables X_{i} and X_{j}, which is denoted $\operatorname{Cov}_{b}\left(X_{i}, X_{j}\right)$, is the covariance between the group means for X_{i} and X_{j}. The within-groups covariance matrix \mathbf{W} has (i, j) th element $\operatorname{Cov}_{w}\left(X_{i}, X_{j}\right)$. The
between-groups covariance matrix \mathbf{B} has (i, j) th element $\operatorname{Cov}_{b}\left(X_{i}, X_{j}\right)$.
19 For a linear combination D of variables of the form

$$
D=\sum_{j=1}^{p} \alpha_{j}\left(X_{j}-\overline{\bar{X}}_{j}\right)
$$

the between-groups covariance of D, denoted $V_{b}(D)$, and the within-groups variance of D, denoted $V_{w}(D)$, are given by

$$
\begin{aligned}
& V_{b}(D)=\sum_{j=1}^{p} \alpha_{j}^{2} V_{b}\left(X_{j}\right)+2 \sum_{j, k: k>j} \alpha_{j} \alpha_{k} \operatorname{Cov}_{b}\left(X_{j}, X_{k}\right), \\
& V_{w}(D)=\sum_{j=1}^{p} \alpha_{j}^{2} V_{w}\left(X_{j}\right)+2 \sum_{j, k: k>j} \alpha_{j} \alpha_{k} \operatorname{Cov}_{w}\left(X_{j}, X_{k}\right) .
\end{aligned}
$$

The separation achieved by D, denoted $\operatorname{Sep}(D)$, is the ratio of the between-groups variance of D to the within-groups variance of D :

$$
\operatorname{Sep}(D)=\frac{V_{b}(D)}{V_{w}(D)}
$$

20 In canonical discrimination, the (first) discriminant function D is the linear combination

$$
D=\sum_{j=1}^{p} \alpha_{j}\left(X_{j}-\overline{\bar{X}}_{j}\right)
$$

for which the separation is maximized, subject to a constraint on the loadings $\alpha_{1}, \ldots, \alpha_{p}$. Commonly used constraints are

$$
\sum_{j=1}^{p} \alpha_{j}^{2}=1
$$

and

$$
V_{w}(D)=1
$$

21 In canonical discrimination, the standardized version Z_{j} of a variable X_{j} is defined so that Z_{j} has mean 0 and within-groups variance 1 , using the formula

$$
Z_{j}=\frac{X_{j}-\overline{\bar{X}}_{j}}{\sqrt{V_{w}\left(X_{j}\right)}}
$$

The variable Z_{j} is called the group-standardized variable.

22 The discriminant function

$$
D=\sum_{j=1}^{p} \alpha_{j}\left(X_{j}-\overline{\bar{X}}_{j}\right)
$$

may be written in terms of the group-standardized variables as follows:

$$
D=\sum_{j=1}^{p} a_{j} Z_{j}
$$

where the loadings a_{j} are given by

$$
a_{j}=\alpha_{j} \sqrt{V_{w}\left(X_{j}\right)} .
$$

The separation achieved by the discriminant function D is the same whether D is based on unstandardized or group-standardized variables.
23 The k th discriminant function D_{k} is the linear combination

$$
D_{k}=\sum_{j=1}^{p} \alpha_{k j}\left(X_{j}-\overline{\bar{X}}_{j}\right)
$$

that maximizes the separation, subject to the within-groups covariance between D_{k} and D_{k-1}, \ldots, D_{1} being zero, and subject to a constraint on the loadings $\alpha_{k j}$ (see 20). The k th discriminant function may also be written in terms of group-standardized variables as follows:

$$
\begin{gathered}
D_{k}=\sum_{j=1}^{p} a_{k j} Z_{j}, \\
\text { with } a_{k j}=\alpha_{k j} \sqrt{V_{w}\left(X_{j}\right)} .
\end{gathered}
$$

24 The total separation is the sum of the separations achieved by all p discriminant functions:

$$
\text { total separation }=\operatorname{Sep}\left(D_{1}\right)+\cdots+\operatorname{Sep}\left(D_{p}\right) .
$$

The percentage separation achieved by the discriminant function D_{j}, denoted PSA $_{j}$, is

$$
\mathrm{PSA}_{j}=\frac{\operatorname{Sep}\left(D_{j}\right)}{\text { total separation }} \times 100 \% .
$$

The cumulative percentage separation achieved by D_{1}, \ldots, D_{j}, denoted CPSA_{j}, is

$$
\mathrm{CPSA}_{j}=\mathrm{PSA}_{1}+\cdots+\mathrm{PSA}_{j} .
$$

25 An allocation rule for G groups based on the discriminant function is defined by $G-1$ cut-off points or cutpoints l_{1}, \ldots, l_{G-1} such that $l_{1}<l_{2}<\cdots<l_{G-1}$. The allocation rule is of the following form:

$$
\begin{cases}\text { if } d \leq l_{1} & \text { allocate to group 1, } \\ \text { if } l_{1}<d \leq l_{2} & \text { allocate to group 2, } \\ \vdots & \vdots \\ \text { if } l_{G-2}<d \leq l_{G-1} \\ \text { otherwise } & \text { allocate to group } G-1, \\ \text { allocate to group } G .\end{cases}
$$

26 In choosing the cutpoints, three factors must be considered.
\diamond For each group g, the probability density function of the values of the discriminant function for an observation randomly selected from all those known to be in group g.
\diamond For each group g, the prior probability that an observation randomly chosen belongs to group g.
\diamond For each pair of groups, the cost of wrongly allocating an observation to one group when it actually belongs to the other group.

27 In practice, it is often assumed that the distribution of values of D for group g is normal with mean μ_{g}, and that the distributions for the groups have common variance. If the groups are numbered so that $\mu_{1}<\mu_{2}<\cdots<\mu_{G}$, then with the above assumption and under the assumptions of equal prior probabilities and equal costs, the cutpoints are given by

$$
l_{g}=\frac{1}{2}\left(\mu_{g}+\mu_{g+1}\right), \quad g=1, \ldots, G-1
$$

28 The misclassification rate is the percentage of observations that are misclassified:

$$
\text { misclassification rate }=\frac{\text { number misclassified }}{\text { number in sample }} \times 100 \% .
$$

Information on the way in which observations are misclassified is conveyed in a confusion matrix. When there are G groups, the confusion matrix has G rows and G columns, and element (i, j) is the percentage of observations in group i that were allocated to group j.

5.5 Bayesian statistics

The Bayesian approach

1 The probability of an event may sometimes be estimated using the observed or hypothetical relative frequency of the event. If this is not possible, subjective estimates may be required. These represent the opinions and beliefs of the person making the estimate.

2 For two events A and B, the conditional probabilities $P(A \mid B)$ and $P(B \mid A)$ are related by Bayes' theorem:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

where the probability $P(B)$ may be obtained using the formula

$$
P(B)=P(B \mid A) P(A)+P(B \mid \text { not } A) P(\text { not } A)
$$

3 Bayes' theorem provides a way of updating probabilities. In the absence of additional information, a prior probability is determined. Once additional information becomes available, the probability is revised to obtain the posterior probability. In sequential updating, this procedure is repeated several times.
4 In Bayesian inference about a parameter θ, prior beliefs about θ are represented by a prior distribution with probability density function $f(\theta)$, called the prior density. A prior is said to be weak or strong according to how peaked it is, greater uncertainty about θ corresponding to flatter priors.

5 The information about a parameter θ that is contained in observed data $x_{1}, x_{2}, \ldots, x_{n}$ on a random variable X is represented by the likelihood function $L(\theta)$.
6 Bayesian inference is based on the posterior distribution for θ, given the observed data, with posterior density $f(\theta \mid$ data $)$. This is obtained from the prior density $f(\theta)$ and the likelihood $L(\theta)$ using the expression

$$
f(\theta \mid \text { data }) \propto L(\theta) \times f(\theta)
$$

or, in words,
posterior \propto likelihood \times prior.
The process of obtaining the posterior distribution and using it for inference is called prior to posterior analysis.

Prior to posterior analyses

7 Standard distributions are often used to represent prior beliefs about a parameter θ. The normal prior $N(a, b)$ may be used to represent beliefs about θ that are symmetric about a single most likely value.
$\diamond \quad$ Mode $=$ median $=$ mean $=a$.
\diamond Variance $=b$.
\diamond All values of θ in the range $-\infty<\theta<\infty$ are possible, but only those in the range $a \pm 3 \sqrt{b}$ are likely.

8 The uniform prior $U(a, b)$, with parameters a and b, may be used to represent the belief that the value of θ lies between a and b when it is not known which values in the interval $[a, b]$ are more likely than others.
9 The uniform prior $U(a, b)$ is noninformative if the interval [$a, b]$ necessarily includes all values in the range of θ. Improper uniform priors may be used to represent lack of prior information about θ and its range.

10 The beta prior with parameters $a>0$ and $b>0$, which is denoted $\operatorname{Beta}(a, b)$, may be used to represent beliefs about a proportion $\theta, 0 \leq \theta \leq 1$.
\diamond When $a>1$ and $b>1$, the beta density has a single mode, given by

$$
\text { mode }=\frac{a-1}{a+b-2}
$$

\diamond When $a<1$, the beta density has a mode at 0 . When $b<1$, it has a mode at 1 . When $a<1$ and $b<1$, the density has two modes - at 0 and 1.
\diamond The mean and variance of $\operatorname{Beta}(a, b)$ are given by

$$
\text { mean }=\frac{a}{a+b}, \quad \text { variance }=\frac{a b}{(a+b)^{2}(a+b+1)}
$$

\diamond The larger the value of $a+b$ is, the stronger are the beliefs represented by the beta prior.
\diamond The $\operatorname{Beta}(1,1)$ distribution is the same as the uniform distribution $U(0,1)$.
11 The gamma prior with parameters $a>0$ and $b>0$, which is denoted $\operatorname{Gamma}(a, b)$, may be used to represent beliefs about a parameter θ which takes only non-negative values. The parameter a is the shape parameter.
\diamond When $a>1$, the prior has a single mode given by

$$
\text { mode }=\frac{a-1}{b}
$$

When $0<a \leq 1$, there is a single mode at 0 .
\diamond The mean and variance of $\operatorname{Gamma}(a, b)$ are given by

$$
\text { mean }=\frac{a}{b}, \quad \text { variance }=\frac{a}{b^{2}} .
$$

12 Three steps are involved in specifying a prior $f(\theta)$.
\diamond Assess the location of $f(\theta)$.
\diamond Assess the spread of $f(\theta)$.
\diamond Calculate the values of a and b that give the assessed location and spread.
13 Assessing the location of a prior for a parameter θ is most readily based on the mode or median. The spread of the prior may be assessed using an equal-tailed $100(1-\alpha) \%$ interval (L, U), where

$$
P(\theta \leq L)=P(\theta>U)=\frac{1}{2} \alpha
$$

14 The mean a and variance b of a normal prior may be chosen as follows:

$$
\begin{aligned}
& a=\text { assessed mode or median } \\
& b=\left(\frac{U-L}{2 z}\right)^{2}
\end{aligned}
$$

where L and U are the assessed values of the $\alpha / 2$-quantile and the $(1-\alpha / 2)$-quantile of θ, respectively, and z is the $(1-\alpha / 2)$-quantile of $N(0,1)$.

Table 2 of the statistical tables contains quantiles for the standard normal distribution.

15 For some likelihoods, a prior can be used which produces a posterior distribution of the same form as the prior distribution. Such a prior is called a conjugate prior. When a conjugate prior is used, the prior to posterior Bayesian analysis is called a conjugate analysis. Some standard conjugate analyses are summarized in the table below; x is an observation on a random variable X, and \bar{x} represents the mean of a sample of n observations on X.

Name	Prior	Data	Posterior
beta/binomial	$\theta \sim \operatorname{Beta}(a, b)$	$X \sim B(n, \theta)$	$\operatorname{Beta}(a+x, b+n-x)$
gamma/Poisson	$\mu \sim \operatorname{Gamma}(a, b)$	$X \sim \operatorname{Poisson}(\mu)$	$\operatorname{Gamma}(a+n \bar{x}, b+n)$
normal/normal	$\mu \sim N(a, b)$	$X \sim N\left(\mu, \sigma^{2}\right)$	$N\left(\frac{\sigma^{2} a+n b \bar{x}}{\sigma^{2}+n b}, \frac{\sigma^{2} b}{\sigma^{2}+n b}\right)$
		where σ^{2} is known	

16 Prior to posterior Bayesian analyses may be undertaken using noninformative or improper uniform priors. Some standard analyses are summarized in the table below; x is an observation on a random variable X, and \bar{x} represents the mean of a sample of n observations on X.

Name	Prior	Data	Posterior
uniform/binomial	$\theta \sim U(0,1)$	$X \sim B(n, \theta)$	$\operatorname{Beta}(1+x, 1+n-x)$
uniform/Poisson	$\mu \sim$ improper uniform on $[0, \infty)$	$X \sim \operatorname{Poisson}(\mu)$	$\operatorname{Gamma}(n \bar{x}, n)$
uniform/normal	$\mu \sim$ improper uniform on $(-\infty, \infty)$	$X \sim N\left(\mu, \sigma^{2}\right)$	$N\left(\bar{x}, \frac{\sigma^{2}}{n}\right)$

17 A plot of the posterior distribution for a parameter θ is always helpful. The location of the posterior distribution may be summarized conveniently by the posterior mode or the posterior median. The spread of the posterior distribution may be summarized by the posterior variance. Probabilities calculated from posterior distributions may also be of interest.
18 An interval (l, u) is a $100(1-\alpha) \%$ credible interval for a parameter θ if the posterior probability that $l \leq \theta \leq u$, given the data, is equal to $1-\alpha$:

$$
P(l \leq \theta \leq u \mid \text { data })=1-\alpha
$$

The probability $1-\alpha$ is the credibility level of the interval.
19 A Highest Posterior Density (HPD) credible interval for a posterior distribution with a single mode contains the most likely values of θ. An equal-tailed credible interval satisfies

$$
P(\theta<l \mid \text { data })=P(\theta>u \mid \text { data })=\frac{1}{2} \alpha
$$

Bayesian inference via simulation

20 When a conjugate analysis does not seem appropriate, or when the mathematics involved in using a conjugate analysis is complicated, simulation can be used to obtain information about the posterior distribution. Simulation is particularly useful in non-conjugate Bayesian analyses or when functions of parameters are of interest.
21 Stochastic simulation, or Monte Carlo (MC) simulation, involves mimicking the properties of a distribution by 'randomly' sampling values from the distribution.

22 The Monte Carlo standard error of a mean obtained by simulation, or the MC error, relates to the variability of the simulation, and may be reduced by increasing N, the number of values sampled in the simulation. The $\mathbf{5 \%}$ rule of thumb states that N should be large enough to ensure that the Monte Carlo standard error of the mean is less than 5% of the sample standard deviation.

23 To make inferences about a parameter ϕ which is some function $g(\theta)$ of a parameter θ that can readily be simulated, proceed as follows.
\diamond Simulate N values of θ, denoted $\theta_{1}, \ldots, \theta_{N}$.
\diamond Apply the function g to each of the simulated values, to give values $\phi_{1}=g\left(\theta_{1}\right), \ldots, \phi_{n}=g\left(\theta_{n}\right)$.
\diamond Use these values to make inferences about ϕ.
24 For a Bayesian analysis involving more than one unknown parameter, interest lies in the joint distribution and in the marginal distributions of the parameters.
\diamond The joint distribution $f(\theta, \phi)$ of two unknown parameters θ and ϕ describes how the two parameters vary together, and may be represented by a scatterplot of simulated pairs of values $\left(\theta_{1}, \phi_{1}\right), \ldots,\left(\theta_{N}, \phi_{N}\right)$.
\diamond The marginal distributions are the distributions of θ and ϕ considered separately, and may be estimated using histograms of the simulated values $\theta_{1}, \ldots, \theta_{N}$ and $\phi_{1}, \ldots, \phi_{N}$, respectively.
\diamond The mean of the marginal distribution of a parameter can be estimated by the sample mean of the simulated values of the parameter; quantiles of the distribution can be estimated using sample quantiles.

Markov chain Monte Carlo

25 A Markov chain is a sequence of random variables X_{1}, X_{2}, \ldots for which the distribution of X_{k+1} depends only on the value of X_{k} and not on any earlier values in the chain. A realization of a Markov chain may be represented using a trace plot, that is, a plot in which the values of the Markov chain are plotted against the iteration number. Under suitable conditions, the values in a realization of a Markov chain will eventually settle down, or converge, to an equilibrium distribution.

26 Markov chain Monte Carlo (MCMC) is a technique for obtaining a posterior distribution of interest as the equilibrium distribution of a Markov chain. It is particularly useful when conjugate analyses are not available.

27 Convergence of a Markov chain can be assessed graphically by running the Markov chain several times from different initial values and checking that the realizations eventually overlap. The period before they overlap is the burn-in period. Inferences can be based on all samples obtained after the burn-in period.

28 Samples obtained using MCMC are dependent. However, the MC error can still be estimated and the 5% rule of thumb used to estimate the sample size to be used.

6 Statistical tables

Table 1 Probabilities for the standard normal distribution, $P(Z \leq z)$

z	0	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
,	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	. 9991	9991	. 9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Example: If $Z \sim N(0,1)$, then $P(Z \leq 0.62)=0.7324$.

Table 2 Quantiles for the standard normal distribution, $P\left(Z \leq q_{\alpha}\right)=\alpha$

α	q_{α}	α	q_{α}	α	q_{α}	α	q_{α}
0.50	0.00000	0.67	0.4399	0.84	0.9945	0.955	1.695
0.51	0.02507	0.68	0.4677	0.85	1.036	0.960	1.751
0.52	0.05015	0.69	0.4959	0.86	1.080	0.965	1.812
0.53	0.07527	0.70	0.5244	0.87	1.126	0.970	1.881
0.54	0.1004	0.71	0.5534	0.88	1.175	0.975	1.960
0.55	0.1257	0.72	0.5828	0.89	1.227	0.980	2.054
0.56	0.1510	0.73	0.6128	0.90	1.282	0.985	2.170
0.57	0.1764	0.74	0.6433	0.905	1.311	0.990	2.326
0.58	0.2019	0.75	0.6745	0.910	1.341	0.991	2.366
0.59	0.2275	0.76	0.7063	0.915	1.372	0.992	2.409
0.60	0.2533	0.77	0.7388	0.920	1.405	0.993	2.457
0.61	0.2793	0.78	0.7722	0.925	1.440	0.994	2.512
0.62	0.3055	0.79	0.8064	0.930	1.476	0.995	2.576
0.63	0.3319	0.80	0.8416	0.935	1.514	0.996	2.652
0.64	0.3585	0.81	0.8779	0.940	1.555	0.997	2.748
0.65	0.3853	0.82	0.9154	0.945	1.598	0.998	2.878
0.66	0.4125	0.83	0.9542	0.950	1.645	0.999	3.090

Example: If $Z \sim N(0,1)$, then $P(Z \leq 1.645)=0.950$, so $q_{0.95}=1.645$.

Table 3 Quantiles for χ^{2}-distributions

df	0.1	0.3	0.5	0.6	0.7	0.8	0.9	0.95	0.975	0.99	0.995	0.999
1	0.016	0.148	0.455	0.708	1.07	1.64	2.71	3.84	5.02	6.63	7.88	10.83
2	0.211	0.713	1.39	1.83	2.41	3.22	4.61	5.99	7.38	9.21	10.60	13.82
3	0.584	1.42	2.37	2.95	3.66	4.64	6.25	7.81	9.35	11.34	12.84	16.27
4	1.06	2.19	3.36	4.04	4.88	5.99	7.78	9.49	11.14	13.28	14.86	18.47
5	1.61	3.00	4.35	5.13	6.06	7.29	9.24	11.07	12.83	15.09	16.75	20.52
6	2.20	3.83	5.35	6.21	7.23	8.56	10.64	12.59	14.45	16.81	18.55	22.46
7	2.83	4.67	6.35	7.28	8.38	9.80	12.02	14.07	16.01	18.48	20.28	24.32
8	3.49	5.53	7.34	8.35	9.52	11.03	13.36	15.51	17.53	20.09	21.95	26.12
9	4.17	6.39	8.34	9.41	10.66	12.24	14.68	16.92	19.02	21.67	23.59	27.88
10	4.87	7.27	9.34	10.47	11.78	13.44	15.99	18.31	20.48	23.21	25.19	29.59
11	5.58	8.15	10.34	11.53	12.90	14.63	17.28	19.68	21.92	24.72	26.76	31.26
12	6.30	9.03	11.34	12.58	14.01	15.81	18.55	21.03	23.34	26.22	28.30	32.91
13	7.04	9.93	12.34	13.64	15.12	16.98	19.81	22.36	24.74	27.69	29.82	34.53
14	7.79	10.82	13.34	14.69	16.22	18.15	21.06	23.68	26.12	29.14	31.32	36.12
15	8.55	11.72	14.34	15.73	17.32	19.31	22.31	25.00	27.49	30.58	32.80	37.70
16	9.31	12.62	15.34	16.78	18.42	20.47	23.54	26.30	28.85	32.00	34.27	39.25
17	10.09	13.53	16.34	17.82	19.51	21.61	24.77	27.59	30.19	33.41	35.72	40.79
18	10.86	14.44	17.34	18.87	20.60	22.76	25.99	28.87	31.53	34.81	37.16	42.31
19	11.65	15.35	18.34	19.91	21.69	23.90	27.20	30.14	32.85	36.19	38.58	43.82
20	12.44	16.27	19.34	20.95	22.77	25.04	28.41	31.41	34.17	37.57	40.00	45.31
21	13.24	17.18	20.34	21.99	23.86	26.17	29.62	32.67	35.48	38.93	41.40	46.80
22	14.04	18.10	21.34	23.03	24.94	27.30	30.81	33.92	36.78	40.29	42.80	48.27
23	14.85	19.02	22.34	24.07	26.02	28.43	32.01	35.17	38.08	41.64	44.18	49.73
24	15.66	19.94	23.34	25.11	27.10	29.55	33.20	36.42	39.36	42.98	45.56	51.18
25	16.47	20.87	24.34	26.14	28.17	30.68	34.38	37.65	40.65	44.31	46.93	52.62
26	17.29	21.79	25.34	27.18	29.25	31.79	35.56	38.89	41.92	45.64	48.29	54.05
27	18.11	22.72	26.34	28.21	30.32	32.91	36.74	40.11	43.19	46.96	49.64	55.48
28	18.94	23.65	27.34	29.25	31.39	34.03	37.92	41.34	44.46	48.28	50.99	56.89
29	19.77	24.58	28.34	30.28	32.46	35.14	39.09	42.56	45.72	49.59	52.34	58.30
30	20.60	25.51	29.34	31.32	33.53	36.25	40.26	43.77	46.98	50.89	53.67	59.70
31	21.43	26.44	30.34	32.35	34.60	37.36	41.42	44.99	48.23	52.19	55.00	61.10
32	22.27	27.37	31.34	33.38	35.66	38.47	42.58	46.19	49.48	53.49	56.33	62.49
33	23.11	28.31	32.34	34.41	36.73	39.57	43.75	47.40	50.73	54.78	57.65	63.87
34	23.95	29.24	33.34	35.44	37.80	40.68	44.90	48.60	51.97	56.06	58.96	65.25
35	24.80	30.18	34.34	36.47	38.86	41.78	46.06	49.80	53.20	57.34	60.27	66.62
36	25.64	31.12	35.34	37.50	39.92	42.88	47.21	51.00	54.44	58.62	61.58	67.99
37	26.49	32.05	36.34	38.53	40.98	43.98	48.36	52.19	55.67	59.89	62.88	69.35
38	27.34	32.99	37.34	39.56	42.05	45.08	49.51	53.38	56.90	61.16	64.18	70.70
39	28.20	33.93	38.34	40.59	43.11	46.17	50.66	54.57	58.12	62.43	65.48	72.05
40	29.05	34.87	39.34	41.62	44.16	47.27	51.81	55.76	59.34	63.69	66.77	73.40

Example: If $X \sim \chi^{2}(4)$, the chi-squared distribution on 4 degrees of freedom (df),
then $P(X \leq 7.78)=0.9$, so $q_{0.9}=7.78$.

