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1 Greek alphabet

α A Alpha ι I Iota ρ P Rho
β B Beta κ K Kappa σ Σ Sigma
γ Γ Gamma λ Λ Lambda τ T Tau
δ Δ Delta µ M Mu υ Υ Upsilon
ε E Epsilon ν N Nu φ Φ Phi
ζ Z Zeta ξ Ξ Xi χ X Chi
η H Eta o O Omicron ψ Ψ Psi
θ Θ Theta π Π Pi ω Ω Omega

2 Notation

General notation
n number of observations in a sample, or sample size
x1, x2, . . . , xn data values in a sample∑

summation sign
x sample mean
m sample median
s, s2 sample standard deviation, sample variance
f(x) probability density function of X
p(x) probability mass function of X
p.d.f. probability density function
p.m.f. probability mass function
E(X), µ expectation or mean of X
V (X), σ2 variance of X
qα α-quantile
0 is approximately equal to
∼ is distributed as
≈ has approximately the same distribution as
N(µ, σ2) normal distribution with mean µ and variance σ2

M(λ) exponential distribution with parameter λ
U(a, b) continuous uniform distribution on the interval a ≤ x ≤ b

B(n, p) binomial distribution with parameters n and p
Poisson(µ) Poisson distribution with parameter µ

θ̂ estimate or estimator of a parameter θ
θ−, θ+ lower and upper confidence limits for θ
H0, H1 null and alternative hypotheses
p value significance probability
Cov(x, y) sample covariance of observations on X and Y
P (Y = y|X = x) conditional probability that Y = y given that X = x

r Pearson correlation coefficient
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Medical statistics
P (D|E) probability of disease D, given exposure E
P (D|not E) probability of disease D, given no exposure E
RR relative risk
OR odds ratio
a, b, c, d entries in a 2× 2 table for a cohort or case-control study
n1, n2 numbers exposed and not exposed in a cohort study
m1, m2 numbers with and without disease in a case-control study
ORi odds ratio for exposure category i relative to the reference exposure category,

or odds ratio for stratum i, or odds ratio for dose level i relative to the lowest dose
Oi observed value for the ith cell of a contingency table
Ei expected value for the ith cell of a contingency table
χ2(ν) chi-squared distribution on ν degrees of freedom
χ2 test statistic for the chi-squared test for no association and McNemar’s test

ÔRMH Mantel–Haenszel estimate of the common odds ratio
f , g numbers of discordant pairs in a 1–1 matched case-control study
RCT randomized controlled trial
α significance level (for sample size calculation)
γ power (for sample size calculation)
πT , πC design values for the treatment group (T) and control group (C) (for sample size calculation)

Time series
Xt time series, or the random variable representing the value at time t in a time series
xt observed time series, or the observed value at time t
T period of a cyclic time series
mt trend component of a time series, or the level at time t
st seasonal component of a time series
s1, . . . , sT seasonal factors
Wt irregular (or random) component of a time series
MA(t) moving average centred on t (for smoothing)
SA(t) weighted moving average used for removing the seasonal component of a seasonal time series
Fj raw seasonal factor for season j
x̂n+1 1-step ahead forecast of Xn+1

α, γ, δ smoothing parameters for exponential smoothing
et 1-step ahead forecast error
SSE sum of squared errors
rk sample autocorrelation at lag k
ρk autocorrelation at lag k
ACF autocorrelation function
αk partial autocorrelation at lag k
PACF partial autocorrelation function
Zt white noise
AR(p) autoregressive model of order p
MA(q) moving average model of order q
ARMA(p, q) autoregressive moving average model of order (p, q)
ARIMA(p, d, q) integrated autoregressive moving average model of order (p, d, q)
d order of differencing
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Multivariate analysis
p dimension of a multivariate data set (number of variables)
n number of observations in a multivariate data set
X data matrix, with n rows and p columns
Xj jth column of a data matrix, containing values of the jth variable
xij value of Xj for observation i; (i, j)th element of X
y vector with jth element yj

xj or Xj sample mean of Xj

x mean vector of X1, . . . , Xp

s2j sample variance of Xj

sjk sample covariance between Xj and Xk

S covariance matrix of X1, . . . , Xp

Zj standardized (or group-standardized) variable
Corr(Xj, Xk) correlation coefficient between Xj and Xk

Y1, Yk first and kth principal components of a data set
αj loading of the first principal component, or of the first discriminant

function, for the jth variable
αkj loading of the kth principal component, or of the kth discriminant

function, for the jth variable
α, αk loadings vectors
TV total variance
PVE percentage variance explained
CPVE cumulative percentage variance explained
G number of groups
ng number of observations in group g
N total number of observations in all groups, N = n1 + · · ·+ nG

xg for grouped data: mean of X for group g

x, X grand mean of X
s2g for grouped data: sample variance of X for group g
Vw, Vw(Xj) within-groups variance
Vb, Vb(Xj) between-groups variance
Covw(Xi, Xj) within-groups covariance of Xi and Xj

Covb(Xi, Xj) between-groups covariance of Xi and Xj

W within-groups covariance matrix
B between-groups covariance matrix
D1, Dk first and kth discriminant functions
Sep(D) separation achieved by the linear combination D
aj loading for a discriminant function based on group-standardized variables
PSAj percentage separation achieved by the jth discriminant function
CPSAj cumulative percentage separation achieved by the first j discriminant functions
l1, . . . , lG−1 cutpoints for an allocation rule involving G groups
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Bayesian statistics
P (A) probability of event A
P (A|B) probability of A given B
f(θ) prior density of θ
L(θ) likelihood of θ given data
θ|data the parameter θ, conditional on data
f(θ|data) posterior density of θ
N(a, b) normal prior with mean a and variance b
Beta(a, b) beta prior with parameters a and b
Gamma(a, b) gamma prior with parameters a and b
U(a, b) uniform prior on the interval a ≤ x ≤ b

τ precision σ−2, the reciprocal of the variance
(L,U) equal-tailed 100(1− α)% interval for a parameter θ as used to specify a prior density
(l, u) 100(1− α)% credible interval for a parameter θ
HPD highest posterior density
N number of samples drawn in a simulation
MC Monte Carlo
MCMC Markov chain Monte Carlo

3 Table of discrete probability
distributions

Name Notation Typical use Range Probability mass Mean Variance
function p(x)

Binomial B(n, p) Total number of successes in
n independent Bernoulli trials

0, 1, . . . , n
(
n
x

)
px(1 − p)n−x np np(1− p)

Poisson Poisson(µ) Counts of independently
occurring events

0, 1, . . .
µxe−µ

x!
µ µ

Discrete
uniform

Equally likely events labelled
1 to n

1, . . . , n
1
n

n+ 1
2

n2 − 1
12
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4 Table of continuous probability
distributions
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5 Outlines

5.1 Background material from the Introduction to
statistical modelling

Graphical and numerical summaries

1 Useful graphical representations of statistical data include bar charts,
histograms and scatterplots. Bar charts are generally used with
categorical data, or discrete numerical data. Histograms are generally
used with continuous data, by grouping the data into intervals or bins.
Scatterplots are used to display the relationship between two numerical
variables.

2 Measures of location include the mean, median and mode. If the n items
in a data set are denoted x1, x2, . . . , xn, then the sample mean, which is
denoted x, is given by

x =
1
n

(x1 + x2 + · · ·+ xn) =
1
n

n∑
i=1

xi.

3 The median of a sample of data with an odd number of values is the middle
value of the data set when the values are placed in order of increasing size. If
the sample size is even, then the median is halfway between the two middle
values.

4 The mode of a set of categorical data is the most frequently occurring
(or modal) value. The term mode is also used to describe a clear peak in a
histogram or a bar chart of a set of numerical data.

5 Measures of dispersion describe the variation within a sample around its
average value. They include the standard deviation and the variance. If the
n items in a data set with sample mean x are denoted x1, x2, . . . , xn, then
the sample standard deviation, denoted s, is given by

s =

√√√√ 1
n− 1

n∑
i=1

(xi − x)2.

The quantity s2 is known as the sample variance.

6 The skewness of a sample is a measure of departure from symmetry. If the
data are symmetrically distributed around the median, then the skewness is
zero. If there is a relatively long tail of values to the right of the median,
then the data are said to be right-skew, or positively skewed. If there is a
relatively long tail of values to the left of the median, then the data are said
to be left-skew, or negatively skewed.
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Probability models

7 A probability model for a continuous random variable X is specified by the
probability density function (p.d.f.) f(x) of the random variable.
A probability model for a discrete random variable X is specified by the
probability mass function (p.m.f.) p(x) of the random variable. Details of
specific p.d.f.s and p.m.f.s are given in the tables in Sections 3 and 4 of this
Handbook.

8 The population mean of a random variable X is denoted µ or E(X); it is
also called the expectation or expected value of X . The population
variance of X is denoted σ2 or V (X); it is equal to E(X − µ)2. The
population standard deviation is σ.

9 The α-quantile of a continuous random variable X is the value qα such that

α = P (X ≤ qα).

The population median of X is the 0.5-quantile. The lower quartile of X
is the 0.25-quantile, and the upper quartile of X is the 0.75-quantile.

10 The central limit theorem states that if n independent random
observations are taken from a population with mean µ and variance σ2, then
for large n the distribution of their mean µ̂ (also called the sampling
distribution of the mean) is approximately normal with mean µ and
variance σ2/n. The standard deviation of the sampling distribution, which is
equal to σ/

√
n, is called the standard error of µ̂.

Confidence intervals

11 A 100(1− α)% confidence interval (µ−, µ+) for a population mean µ,
calculated from a sample of size n with sample mean x, may be used to
represent the uncertainty in the estimate x of µ. The confidence interval may
be interpreted in two ways — using the repeated experiments
interpretation (based on a large number of repetitions of the experiment with
samples of size n), and using the plausible range interpretation (based on
the probability of observing a sample mean as extreme as x, if µ were to take
values outside the confidence interval). These interpretations are equivalent.

12 Given a random sample of size n from a population with mean µ, an
approximate 100(1−α)% confidence interval for µ is given by the
z-interval

(µ−, µ+) =
(
µ̂− z

s√
n
, µ̂+ z

s√
n

)
,

where µ̂ is the sample mean, s is the sample standard deviation, and z is
q1−α/2, the (1 − α/2)-quantile of the standard normal distribution. Table 2 of the statistical tables

contains quantiles for the
standard normal distribution.13 An approximate 100(1−α)% confidence interval for a parameter θ is

given by the z-interval

(θ−, θ+) = (θ̂− zσ̂, θ̂+ zσ̂),

where θ̂ is the sample estimate of θ, σ̂ is the estimated standard error of the
estimator θ̂, and z is q1−α/2, the (1− α/2)-quantile of the standard normal Table 2 of the statistical tables

contains quantiles for the
standard normal distribution.

distribution.

14 When θ is a binomial proportion p, θ̂ is its sample estimate p̂ and the
standard error of p̂ may be estimated by

σ̂ =

√
p̂(1− p̂)

n
.
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Significance tests

15 A significance test may be used to evaluate the strength of evidence
against a null hypothesis H0 of the form

H0: θ = θ0.

The corresponding alternative hypothesis H1 is

H1: θ *= θ0.

16 The strength of evidence against H0 is quantified by the significance
probability or p value. The procedure for carrying out a significance test is
as follows.

$ Determine the null hypothesis H0 and the alternative hypothesis H1.

$ Choose a suitable test statistic and determine the null distribution of the
test statistic.

$ Calculate the observed value of the test statistic and identify the values
that are at least as extreme as the observed value in relation to H0.

$ Calculate the significance probability p.

$ Interpret the significance probability and report the results.

17 The following table provides a rough guide for interpreting p values.

Significance probability p Rough interpretation

p > 0.10 little evidence against H0

0.10 ≥ p > 0.05 weak evidence against H0

0.05 ≥ p > 0.01 moderate evidence against H0

p ≤ 0.01 strong evidence against H0

Correlation and association

18 Two random variables are said to be related, or associated, if knowing
something about the value of one variable tells you something about the
value of the other.

19 A measure of the strength of a linear association is provided by the (Pearson)
correlation coefficient. This is based on the sample covariance. For
observations (x1, y1), (x2, y2), . . . , (xn, yn) on two random variables X and Y
with sample means x and y and sample standard deviations sx and sy, the
sample covariance is

Cov(x, y) =
1

n− 1

n∑
i=1

(xi − x)(yi − y),

and the correlation coefficient is

r =
Cov(x, y)
sxsy

.

20 Conditional probabilities are probabilities of the form ‘probability that
Y = y, given that X = x’, and are written

P (Y = y|X = x).

21 Two discrete random variables X and Y are independent if, for all values of
x and y,

P (Y = y|X = x) = P (Y = y).

If X and Y are not independent, they are said to be dependent, or related,
or associated.
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5.2 Medical statistics

Cohort and case-control studies

1 A cohort study of the association between an exposure E and a disease D
typically includes one group with exposure E (the exposed group) and one
group without exposure E (the control group). The groups are followed
over time and the occurrences of disease D in each group are identified.

2 A case-control study of the association between an exposure E and a
disease D typically includes a group of cases with the disease D and a group
of controls without the disease D, who are otherwise comparable to the
cases. The past exposures of the cases and controls are determined and the
occurrences of exposure E are identified.

3 The risk of disease D, given exposure E, is P (D|E). The relative risk is

RR =
P (D|E)

P (D|not E)
.

4 The odds of disease D, given exposure E, is

OD(D|E) =
P (D|E)

P (not D|E)
.

The odds ratio is

OR =
P (D|E)× P (not D|not E)
P (not D|E)× P (D|not E)

.

5 Data from a cohort study may be presented in a table as follows.

Disease outcome
Exposure category D not D Total

E a b n1

not E c d n2

The sample estimate of the relative risk RR from a cohort study is

R̂R =
a/n1

c/n2
.

An approximate 100(1− α)% confidence interval for the relative risk RR is

(RR−, RR+) = (R̂R× exp(−zσ̂), R̂R× exp(zσ̂)),

where z is the (1− α/2)-quantile of the standard normal distribution, and Table 2 of the statistical tables
contains quantiles for the
standard normal distribution.

σ̂ =
√

1
a
− 1
n1

+
1
c
− 1
n2
.
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6 Data from a case-control study may be presented in a table as follows.

Disease outcome
Exposure category D (cases) not D (controls)

E a b
not E c d

Total m1 m2

The sample estimate of the odds ratio OR from a case-control study or a
cohort study is

ÔR =
a× d

b× c
.

An approximate 100(1− α)% confidence interval for the odds ratio OR is

(OR−, OR+) = (ÔR × exp(−zσ̂), ÔR × exp(zσ̂)),

where z is the (1− α/2)-quantile of the standard normal distribution, and Table 2 of the statistical tables
contains quantiles for the
standard normal distribution.

σ̂ =

√
1
a

+
1
b

+
1
c

+
1
d
.

7 In studies with more than one exposure category, one category is chosen as
the reference exposure category and calculations are undertaken relative to
this reference category.

8 When data are arranged in an r × c table, an approximate test for no
association between the variables uses the chi-squared test statistic

χ2 =
∑ (Oi − Ei)2

Ei
,

where the sum is taken over all r × c cells of the table, Oi is the observed
frequency for the ith cell, and Ei is the expected frequency for the ith cell.
The expected frequency for a cell is given by

expected frequency =
row total× column total

overall total
.

When the null hypothesis of no association is true,

χ2 ≈ χ2((r − 1)(c− 1)). Table 3 of the statistical tables
contains quantiles for
chi-squared distributions.The approximation is adequate provided that all the expected frequencies are

at least 5. When this is not the case, Fisher’s exact test can be used.

Bias, confounding and causation

9 A study is biased if some aspects of the design, sampling, data collection or
analysis method produce results that systematically overestimate or
underestimate the strength of association. In particular, bias may arise from
selection bias, information bias or confounding.

10 Confounding may arise if both the exposure E and the disease D are
associated with a third variable C, known as a confounder. Confounding
bias may be explored by stratifying the data according to the levels of the
confounder.
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11 Data from stratum i of a cohort study or case-control study stratified
according to the levels of a variable C may be presented in a table as follows.

Exposure category Disease/Cases No disease/Controls

Exposed ai bi
Not exposed ci di

If the underlying stratum-specific odds ratios are the same for all strata, then
their common value OR is estimated by the Mantel–Haenszel odds ratio:

ÔRMH =
∑
aidi/Ni∑
bici/Ni

,

where Ni = ai + bi + ci + di, and the summations are over all the strata.

12 In a matched case-control study, the controls in each matched
case-control set are selected so that they match the case with respect to
the confounding variables.

13 The case-control pairs from a 1–1 matched case-control study may be
presented in a table as follows.

Controls
Exposed Not exposed

Exposed e f
Cases

Not exposed g h

The Mantel–Haenszel estimate of the odds ratio is

ÔRMH =
f

g
.

An approximate 100(1− α)% confidence interval for the odds ratio is

(OR−, OR+) = (ÔRMH × exp(−zσ̂), ÔR × exp(zσ̂)),

where z is the (1− α/2)-quantile of the standard normal distribution, and Table 2 of the statistical tables
contains quantiles for the
standard normal distribution.

σ̂ =
√

1
f

+
1
g
.

14 McNemar’s test for no association in a 1–1 matched case-control study is
based on the test statistic

χ2 =
(|f − g| − 1)2

f + g
.

Under the null hypothesis of no association, χ2 ≈ χ2(1). Table 3 of the statistical tables
contains quantiles for χ2(1).

15 The presence of an interaction between a stratifying variable C and the
association between an exposure E and a disease outcome D may be
investigated using a significance test of homogeneity.

If there are k strata, the null hypothesis is OR1 = OR2 = · · · = ORk, where
ORi is the odds ratio for stratum i. Tarone’s test for homogeneity is
based on a test statistic whose distribution is approximately χ2(k − 1) under Table 3 of the statistical tables

contains quantiles for
chi-squared distributions.

the null hypothesis.

16 Association does not imply not causation. Bradford Hill’s criteria for
causation may help in assessing whether an association is causal.

17 A dose is a quantified exposure. A dose-response relationship exists
between an exposure E and a disease D if the risk (or odds) of disease varies
according to the dose of that exposure.
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18 The presence of a dose-response relationship may be investigated using the
chi-squared test for no linear trend. The null hypothesis for this
significance test is that the log odds of disease does not increase or decrease
linearly with the dose. Under the null hypothesis, the distribution of the test
statistic is approximately χ2(1). Table 3 of the statistical tables

contains quantiles for χ2(1).

Randomized controlled trials and the medical literature

19 A randomized controlled trial is a cohort study in which participants are
randomly allocated to treatment and control groups. Stratified
randomization, in which participants are randomized by blocks, may be
used to improve balance in the characteristics of the patients allocated to
the different groups. Bias is further reduced by using concealment
procedures such as double blinding or single blinding.

20 The flow chart of the trial documents the numbers of participants included
and excluded at each stage of the trial. The recommended method of
analysis of randomized controlled trials is by intention to treat. In an
intention-to-treat analysis, the groups analysed are as close as possible to
those randomized. An alternative method of analysis is per protocol. In a
per-protocol analysis, only participants who complete the treatment to which
they were randomized are included.

21 Pharmaceutical drugs are evaluated in clinical trials. The evaluation
progresses through four phases. Phase III studies are always randomized
controlled trials. An independent Data Monitoring Committee reviews
the data and can halt a trial on ethical grounds.

22 The sample size required for a randomized controlled trial to compare the
effect of treatment on a disease D is derived within the framework of
fixed-level testing. The null and alternative hypotheses may be written as

H0 : pT = pC , H1 : pT *= pC ,

where pT is the probability of disease in the treatment group, and pC is the
probability of disease in the control group.

23 A Type I error is said to occur if the null hypothesis H0 is rejected when it
is true. A Type II error is said to occur if the null hypothesis H0 is not
rejected when it is false.

The significance level of the test, α, is the probability of a Type I error.
The power of the test, γ, is the probability of avoiding a Type II error.

24 To calculate the sample size for a trial with two groups of equal size, the
design values πT and πC , the significance level α and the power γ must be
specified. The sample size n for each trial group is given approximately by

n =
2(q1−α/2 + qγ)2π0(1− π0)

(πT − πC)2
,

where q1−α/2 and qγ denote, respectively, the (1− α/2)-quantile and the
γ-quantile of the standard normal distribution, and π0 = (πT + πC)/2. Table 2 of the statistical tables

contains quantiles for the
standard normal distribution.25 The power γ available in a trial with two groups each of size n is obtained

from qγ, the γ-quantile of the standard normal distribution, which is given by
the expression

qγ = |πT − πC |
√

n

2π0(1 − π0)
− q1−α/2.

The notation in this expression is the same as that used in 24.

13



26 Evidence from all available studies, or all available studies of a particular
type, may be reviewed together as part of a systematic review. The
selection of studies in such a review is particularly important in order to
avoid publication bias. Sometimes a quantitative assessment of the
strength of evidence from several studies may be possible by combining their
results in a meta-analysis.

27 In a meta-analysis, the results of several studies are combined to obtain a
pooled odds ratio and confidence interval, for example using the
Mantel–Haenszel odds ratio (see 11). The presence of heterogeneity
between studies may be investigated using Tarone’s test for homogeneity
(see 15). A forest plot is used to display the results of a meta-analysis.

28 Medical papers often contain statistical analyses. A typical medical paper
includes the following sections: Abstract, Introduction, Methods,
Results, Discussion.

5.3 Time series

Decomposition models

1 A time series is a collection of observations Xt on some random variable X
at equally-spaced times 1, 2, . . . , t, t+ 1, . . . . A time plot is a graph of the
observed values xt against t.

2 A cycle is a regular pattern that repeats at fixed intervals. The time interval
between cycles is the period. A cycle whose period is determined by the
natural clock is seasonal. A seasonal cycle with period one year is annual.
Seasonality may be displayed using a seasonal plot.

3 The additive decomposition model for a time series Xt is

Xt = mt + st +Wt, t = 1, 2, . . . ,

where mt is the trend component, st is the seasonal component of
period T , and Wt is the irregular (or random) component, sometimes also
described as noise. The seasonal component satisfies

st = st+T for all t,
s1 + · · ·+ sT = 0.

The distinct values s1, . . . , sT are the seasonal factors.

The irregular component Wt has mean 0 and variance σ2:

E(Wt) = 0, V (Wt) = σ2.

4 The multiplicative decomposition model for a time series Xt which
takes only positive values is

Xt = mt × st ×Wt.

The seasonal component st satisfies

st = st+T for all t,
s1 × s2 × · · · × sT = 1.

5 The simple moving average of order 2q + 1 centred on t is given by the
transformation

MA(t) =
1

2q + 1
(Xt−q + · · ·+Xt + · · ·+Xt+q).

6 A weighted moving average of order 2q + 1 has the form

MA(t) = a−qXt−q + · · ·+ a−1Xt−1 + a0Xt + a1Xt+1 + · · ·+ aqXt+q,

where the weights aj , j = −q,−q + 1, . . . , q, add up to 1.
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7 Simple and weighted moving averages may be used for smoothing a time
series. The order of the moving average should be chosen so as to avoid
both over-smoothing and under-smoothing the time series.

8 For a seasonal time series Xt, which may be described by an additive model,
and for which the seasonal period is T (an even number), the seasonal
component st may be estimated as follows.

First, the series is smoothed using a suitable weighted moving average SA(t).
Then the series of differences yt = xt − SA(t) is obtained, and the raw
seasonal factors Fj , j = 1, . . . , T , are calculated by averaging the values yt

for each season. Finally, the seasonal factors are estimated by

ŝj = Fj − F, j = 1, . . . , T,

where F is the average of the raw seasonal factors.

9 A time series is seasonally adjusted if its seasonal component has been
estimated and removed, leaving only a trend component and an irregular
component.

Forecasting

10 Forecasting is the process of predicting future values of a time series based
on the past values of the time series. A forecast x̂n+1 of Xn+1 based on
xn, xn−1, xn−2, . . . is called a 1-step ahead forecast of Xn+1.

11 If a time series Xt is described by an additive model with constant level and
no seasonality, then 1-step ahead forecasts may be obtained by simple
exponential smoothing using the formula

x̂n+1 = αxn + (1− α)x̂n,

where xn is the observed value at time n, x̂n and x̂n+1 are the 1-step ahead
forecasts of Xn and Xn+1, and α is a smoothing parameter, 0 ≤ α ≤ 1.
The method requires an initial value x̂1.

12 The 1-step ahead forecast error is the difference between the observed
value and the 1-step ahead forecast of Xt: et = xt − x̂t. The sum of
squared errors, or SSE, is given by

SSE =
n∑

t=1

e2t =
n∑

t=1

(xt − x̂t)
2
.

13 If a time series Xt is described by an additive model with a linear trend
component and no seasonality, then 1-step ahead forecasts may be obtained
by Holt’s exponential smoothing. There are two smoothing parameters:
α for the level and γ for the slope.

If in addition the time series has a seasonal component, forecasts may be
obtained using Holt–Winters exponential smoothing. There are three
smoothing parameters: α for the level, γ for the slope and δ for the seasonal
component.

For all exponential smoothing methods, optimal values of the smoothing
parameters are obtained by minimizing the SSE.

14 Suppose that Xt is a time series with n observed values x1, x2, . . . , xn. The
time series lagged by k places is the time series with Xt−k in position k.
The first k positions of the lagged series comprise missing values.

15 The sample autocorrelation at lag k is a correlation coefficient rk
calculated between a time series and a copy of itself, lagged by k places. It is
calculated using the n− k pairs of points (x1, xk+1), (x2, xk+2), . . . ,
(xn−k, xn).
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16 The population autocorrelations ρk, k = 1, 2, . . ., define the autocorrelation
function, or ACF. Under the null hypothesis ρk = 0, the distribution of the
sample autocorrelation calculated from a time series with n time points is
approximately normal with mean 0 and variance 1/n.

17 The sample autocorrelations may be displayed on a correlogram or sample
ACF plot. Significance bounds are horizontal lines plotted at positions
±1.96/

√
n on the correlogram.

18 For a fixed number k of lags, the null hypothesis

H0 : ρ1 = ρ2 = · · · = ρk = 0

may be tested using a portmanteau test such as the Ljung–Box test.

19 A 100(1−α)% prediction interval for Xn+1, given observed values up to
and including xn, is an interval with probability 1− α of containing Xn+1.

20 Suppose that a 1-step ahead forecast x̂n+1 for Xn+1 has been obtained,
together with the SSE, the sum of squared forecast errors at times 1, 2, . . . , n.
An approximate 100(1− α)% prediction interval for Xn+1 is given by(

x̂n+1 − z

√
SSE

n
, x̂n+1 + z

√
SSE

n

)
,

where z is the (1− α/2)-quantile of the standard normal distribution. The Table 2 of the statistical tables
contains quantiles for the
standard normal distribution.

assumptions required are that the forecast errors are normally distributed
with mean zero and constant variance, and that the autocorrelations between
the forecast errors are zero at lags k ≥ 1.

21 A time series Zt is said to be white noise if Zt is normally distributed with
mean zero and constant variance σ2, and the autocorrelations at all lags
k ≥ 1 are zero.

ARIMA models

22 A time series Xt is stationary in mean if it has constant mean, E(Xt) = µ.
It is stationary in variance if it has constant variance, V (Xt) = σ2. It is
stationary in correlation if for all k, ρk, the autocorrelation between Xt

and Xt−k, depends only on the lag k. The time series is stationary if it is
stationary in mean, in variance and in correlation.

23 The partial autocorrelation at lag k, αk, is a measure of the direct
dependence between Xt and Xt−k. The partial autocorrelations αk,
k = 0, 1, 2, . . ., define the partial autocorrelation function, or PACF.
The partial correlogram, or sample PACF plot, is a bar chart of the
sample PACF.

24 Let Xt be a stationary time series with mean µ. The autoregressive model
of order p, or AR(p) model, has the form

Xt − µ = β1(Xt−1 − µ) + β2(Xt−2 − µ) + · · ·+ βp(Xt−p − µ) + Zt,

where β1, β2, . . . , βp are parameters to be estimated, and Zt is white noise
with mean 0 and variance σ2.

25 The ACF for an AR(1) model is given by ρk = βk
1 for k ≥ 0. The ACF for an

AR(p) model tails off to zero in magnitude, either exponentially or in a
damped sinusoidal pattern, as the lag increases.

The PACF for an AR(p) model satisfies αp = βp, and αk = 0 for lags k > p.

26 Let Xt be a stationary time series with mean µ. The moving average
model of order q, or MA(q) model, has the form

Xt − µ = Zt − θ1Zt−1 − · · · − θqZt−q,

where θ1, θ2, . . . , θq are parameters to be estimated, and Zt is white noise
with mean 0 and variance σ2.
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27 The ACF for an MA(q) model satisfies

ρq =
−θq

1 + θ21 + · · ·+ θ2q
,

and ρk = 0 for k > q.

The PACF for an MA(q) model tails off to zero in magnitude, either
exponentially or in a damped sinusoidal pattern, as the lag increases.

28 Let Xt be a stationary time series with mean zero. The autoregressive
moving average model of order (p, q), or ARMA(p, q) model, has the
form

Xt − µ = β1(Xt−1 − µ) + · · ·+ βp(Xt−p − µ) + Zt − θ1Zt−1 − · · · − θqZt−q.

An integrated moving average model of order (p,d, q), or
ARIMA(p,d, q) model, is an ARMA(p, q) model applied to a time series
after differencing of order d.

29 The key features of ARMA models are summarized in the table below.

Model Notation ACF PACF

White noise ARMA(0, 0) Zero at lags > 0 Zero at lags > 0
Autoregressive ARMA(p, 0) Tails off to zero Zero after lag p
Moving average ARMA(0, q) Zero after lag q Tails off to zero
Mixed ARMA(p, q) Tails off to zero Tails off to zero

30 The principle of parsimony in selecting an ARIMA model is to keep the
value of p+ q to a minimum.

31 The steps involved in selecting an ARIMA model for a non-seasonal time
series are as follows.

$ Check than an additive model is appropriate. If it is not appropriate,
then transform the series to obtain a series that can be represented by
an additive model.

$ Identify the order of differencing, d, required to obtain stationarity.

$ Identify those ARIMA(p, d, q) models that are consistent with the
correlogram and partial correlogram for the stationary series.

$ Choose the model(s) with the lowest value of p+ q.

32 After fitting an ARIMA model, its adequacy should be checked, as follows.

$ Check the fit of the model by plotting the time series and the 1-step
ahead forecasts on a multiple time plot.

$ Verify that the distribution of the forecast errors is approximately
normal with mean zero and constant variance.

$ Use the correlogram for the forecast errors and the Ljung–Box
test (see 18) to check that the forecast errors are uncorrelated.

5.4 Multivariate analysis

Describing and displaying multivariate data

1 A multivariate data set comprises observations on two or more random
variables. A bivariate data set has two variables. The number of
variables, p, is the dimension of the data set. An observation is the set of p
measurements made on one sampled unit. The variables X1, . . . , Xp form the
columns of the n× p data matrix X, where n is the number of observations.

2 Multivariate data may be displayed using two-dimensional scatterplots,
three-dimensional scatterplots, matrix scatterplots and profile plots.
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3 The mean vector for a data set with n observations and p variables
X1, . . . , Xp is x = (x1, . . . , xp), where xj is the sample mean of Xj ,

xj =
1
n

n∑
i=1

xij .

4 The sample covariance between Xj and Xk is

sjk =
1

n− 1

n∑
i=1

(xij − xj)(xik − xk).

The covariance between a variable Xj and itself is the sample variance
of Xj, that is, sjj = s2j .

5 The variance-covariance matrix, or covariance matrix, of X1, . . . , Xp is
a square matrix S with p rows and p columns. Element (j, k) of S is sjk, the
sample covariance between Xj and Xk. The diagonal element (j, j) is s2j , the
sample variance of Xj .

6 In standardization, each variable Xj is transformed separately in such a
way that the transformed variable Zj has mean 0 and variance 1. For
observation i, the value xij of Xj is transformed to obtain the value zij of Zj,
as follows:

zij =
xij − xj

sj
,

where xj is the sample mean and sj is the sample standard deviation of Xj .

The numbers zij do not have any units associated with them, so the
standardized variable Zj is scale-free.

7 The correlation matrix of X1, . . . , Xp is the covariance matrix of the
standardized variables Z1, . . . , Zp. Element (j, k) is the correlation coefficient
between Xj and Xk, denoted Corr(Xj , Xk). The diagonal elements of the
correlation matrix are all equal to 1.

Reducing dimension

8 Two approximations Y1 and Y2 to a multivariate data set are equivalent if
constants c1 *= 0 and c2 can be found such that Y2 = c1Y1 + c2.

9 For a data set of dimension p with variables X1, . . . , Xp, the (first)
principal component of the data, denoted Y , is the linear combination

Y =
p∑

j=1

αj(Xj −Xj),

where the loadings vector α = (α1, . . . , αp) is chosen so that the variance
of Y is maximized, subject to the constraint

p∑
j=1

α2
j = 1.

10 For a data set with p variables X1, . . . , Xp, the variance of the linear
combination

Y =
p∑

j=1

αj(Xj −Xj)

can be calculated from the variances and covariances of the original variables
using the formula

V (Y ) =
p∑

j=1

α2
j V (Xj) + 2

∑
j,k:k>j

αjαk Cov(Xj , Xk).
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11 For a multivariate data set with p variables X1, . . . , Xp, the total variance,
TV, is

TV =
p∑

j=1

V (Xj).

The percentage variance explained, PVE, by a linear combination Y is

PVE =
V (Y )
TV

× 100%.

12 For a data set of dimension p with variables X1, . . . , Xp, the kth principal
component of the data, denoted Yk, is the linear combination

Yk =
p∑

j=1

αkj(Xj −Xj),

where the loadings vector αk = (αk1, . . . , αkp) is chosen so that the
variance of Yk is maximized, subject to the following constraints:

p∑
j=1

α2
kj = 1,

Yk is uncorrelated with Y1, . . . , Yk−1.

13 In some circumstances, it is preferable, or even essential, to calculate
principal components using standardized data. In this case, the kth principal
component has the form

Yk =
p∑

j=1

αkjZj .

14 The cumulative percentage variance explained, CPVE, by the first k
principal components is given by

CPVE =
V (Y1) + · · ·+ V (Yk)

TV
× 100%.

15 Kaiser’s criterion for choosing the number of principal components is to
retain components with variance greater than the average of the variances of
the original variables.

In a scree plot, the elbow is the point at which the plot flattens out. The
point preceding the elbow indicates the last component to be retained.

Discrimination

16 Suppose that a multivariate data set comprises observations on G groups,
that ng is the size of group g, and that xg is the mean of a variable X in
group g. Let N denote the total number of observations in the G groups:
N = n1 + · · ·+ nG. The grand mean of X is denoted x and is given by

x =
1
N

G∑
g=1

ngxg.
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17 Suppose that the variance of X in group g is s2g. The between-groups
variance of X , denoted Vb, and the within-groups variance of X ,
denoted Vw, are given by

Vb =
1

N −G

G∑
g=1

ng(xg − x)2,

Vw =
1

N −G

G∑
g=1

(ng − 1)s2g.

The separation achieved by a variable X is given by the ratio of the
between-groups variance to the within-groups variance of X :

separation =
Vb

Vw
.

18 The within-groups covariance for a pair of variables Xi and Xj , which is
denoted Covw(Xi, Xj), is the weighted average of the covariances of Xi and
Xj calculated for each of the groups separately. The between-groups
covariance of variables Xi and Xj, which is denoted Covb(Xi, Xj), is the
covariance between the group means for Xi and Xj . The within-groups
covariance matrix W has (i, j)th element Covw(Xi, Xj). The
between-groups covariance matrix B has (i, j)th element Covb(Xi, Xj).

19 For a linear combination D of variables of the form

D =
p∑

j=1

αj(Xj −Xj),

the between-groups covariance of D, denoted Vb(D), and the within-groups
variance of D, denoted Vw(D), are given by

Vb(D) =
p∑

j=1

α2
j Vb(Xj) + 2

∑
j,k:k>j

αjαk Covb(Xj , Xk),

Vw(D) =
p∑

j=1

α2
j Vw(Xj) + 2

∑
j,k:k>j

αjαk Covw(Xj , Xk).

The separation achieved by D, denoted Sep(D), is the ratio of the
between-groups variance of D to the within-groups variance of D:

Sep(D) =
Vb(D)
Vw(D)

.

20 In canonical discrimination, the (first) discriminant function D is the
linear combination

D =
p∑

j=1

αj(Xj −Xj)

for which the separation is maximized, subject to a constraint on the
loadings α1, . . . , αp. Commonly used constraints are

p∑
j=1

α2
j = 1

and

Vw(D) = 1.

21 In canonical discrimination, the standardized version Zj of a variable Xj is
defined so that Zj has mean 0 and within-groups variance 1, using the
formula

Zj =
Xj −Xj√
Vw(Xj)

.

The variable Zj is called the group-standardized variable.
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22 The discriminant function

D =
p∑

j=1

αj(Xj −Xj)

may be written in terms of the group-standardized variables as follows:

D =
p∑

j=1

ajZj ,

where the loadings aj are given by

aj = αj

√
Vw(Xj).

The separation achieved by the discriminant function D is the same whether
D is based on unstandardized or group-standardized variables.

23 The kth discriminant function Dk is the linear combination

Dk =
p∑

j=1

αkj(Xj −Xj)

that maximizes the separation, subject to the within-groups covariance
between Dk and Dk−1, . . . , D1 being zero, and subject to a constraint on the
loadings αkj (see 20). The kth discriminant function may also be written in
terms of group-standardized variables as follows:

Dk =
p∑

j=1

akjZj,

with akj = αkj

√
Vw(Xj).

24 The total separation is the sum of the separations achieved by all p
discriminant functions:

total separation = Sep(D1) + · · ·+ Sep(Dp).

The percentage separation achieved by the discriminant function Dj ,
denoted PSAj , is

PSAj =
Sep(Dj)

total separation
× 100%.

The cumulative percentage separation achieved by D1, . . . , Dj,
denoted CPSAj , is

CPSAj = PSA1 + · · ·+ PSAj .

25 An allocation rule for G groups based on the discriminant function is
defined by G− 1 cut-off points or cutpoints l1, . . . , lG−1 such that
l1 < l2 < · · · < lG−1. The allocation rule is of the following form:

if d ≤ l1 allocate to group 1,
if l1 < d ≤ l2 allocate to group 2,

...
...

if lG−2 < d ≤ lG−1 allocate to group G− 1,
otherwise allocate to group G.

26 In choosing the cutpoints, three factors must be considered.

$ For each group g, the probability density function of the values of
the discriminant function for an observation randomly selected from all
those known to be in group g.

$ For each group g, the prior probability that an observation randomly
chosen belongs to group g.

$ For each pair of groups, the cost of wrongly allocating an observation to
one group when it actually belongs to the other group.
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27 In practice, it is often assumed that the distribution of values of D for group
g is normal with mean µg, and that the distributions for the groups have
common variance. If the groups are numbered so that µ1 < µ2 < · · · < µG,
then with the above assumption and under the assumptions of equal prior
probabilities and equal costs, the cutpoints are given by

lg = 1
2 (µg + µg+1), g = 1, . . . , G− 1.

28 The misclassification rate is the percentage of observations that are
misclassified:

misclassification rate =
number misclassified
number in sample

× 100%.

Information on the way in which observations are misclassified is conveyed in
a confusion matrix. When there are G groups, the confusion matrix has
G rows and G columns, and element (i, j) is the percentage of observations in
group i that were allocated to group j.

5.5 Bayesian statistics

The Bayesian approach

1 The probability of an event may sometimes be estimated using the observed
or hypothetical relative frequency of the event. If this is not possible,
subjective estimates may be required. These represent the opinions and
beliefs of the person making the estimate.

2 For two events A and B, the conditional probabilities P (A|B) and P (B|A)
are related by Bayes’ theorem:

P (A|B) =
P (B|A)P (A)

P (B)
,

where the probability P (B) may be obtained using the formula

P (B) = P (B|A)P (A) + P (B|not A)P (not A).

3 Bayes’ theorem provides a way of updating probabilities. In the absence of
additional information, a prior probability is determined. Once additional
information becomes available, the probability is revised to obtain the
posterior probability. In sequential updating, this procedure is
repeated several times.

4 In Bayesian inference about a parameter θ, prior beliefs about θ are
represented by a prior distribution with probability density function f(θ),
called the prior density. A prior is said to be weak or strong according to
how peaked it is, greater uncertainty about θ corresponding to flatter priors.

5 The information about a parameter θ that is contained in observed data
x1, x2, . . . , xn on a random variable X is represented by the likelihood
function L(θ).

6 Bayesian inference is based on the posterior distribution for θ, given the
observed data, with posterior density f(θ|data). This is obtained from the
prior density f(θ) and the likelihood L(θ) using the expression

f(θ|data) ∝ L(θ)× f(θ),

or, in words,

posterior ∝ likelihood× prior.

The process of obtaining the posterior distribution and using it for inference
is called prior to posterior analysis.
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Prior to posterior analyses

7 Standard distributions are often used to represent prior beliefs about a
parameter θ. The normal prior N(a, b) may be used to represent beliefs
about θ that are symmetric about a single most likely value.

$ Mode = median = mean = a.

$ Variance = b.

$ All values of θ in the range −∞ < θ <∞ are possible, but only those in
the range a± 3

√
b are likely.

8 The uniform prior U(a, b), with parameters a and b, may be used to
represent the belief that the value of θ lies between a and b when it is not
known which values in the interval [a, b] are more likely than others.

9 The uniform prior U(a, b) is noninformative if the interval [a, b] necessarily
includes all values in the range of θ. Improper uniform priors may be used
to represent lack of prior information about θ and its range.

10 The beta prior with parameters a > 0 and b > 0, which is denoted
Beta(a, b), may be used to represent beliefs about a proportion θ, 0 ≤ θ ≤ 1.

$ When a > 1 and b > 1, the beta density has a single mode, given by

mode =
a− 1

a+ b− 2
.

$ When a < 1, the beta density has a mode at 0. When b < 1, it has a
mode at 1. When a < 1 and b < 1, the density has two modes — at 0
and 1.

$ The mean and variance of Beta(a, b) are given by

mean =
a

a+ b
, variance =

ab

(a+ b)2(a+ b+ 1)
.

$ The larger the value of a+ b is, the stronger are the beliefs represented
by the beta prior.

$ The Beta(1, 1) distribution is the same as the uniform distribution
U(0, 1).

11 The gamma prior with parameters a > 0 and b > 0, which is denoted
Gamma(a, b), may be used to represent beliefs about a parameter θ which
takes only non-negative values. The parameter a is the shape parameter.

$ When a > 1, the prior has a single mode given by

mode =
a− 1
b

.

When 0 < a ≤ 1, there is a single mode at 0.

$ The mean and variance of Gamma(a, b) are given by

mean =
a

b
, variance =

a

b2
.

12 Three steps are involved in specifying a prior f(θ).

$ Assess the location of f(θ).

$ Assess the spread of f(θ).

$ Calculate the values of a and b that give the assessed location and
spread.

13 Assessing the location of a prior for a parameter θ is most readily based on
the mode or median. The spread of the prior may be assessed using an
equal-tailed 100(1−α)% interval (L,U), where

P (θ ≤ L) = P (θ > U) = 1
2α.
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14 The mean a and variance b of a normal prior may be chosen as follows:

a = assessed mode or median,

b =
(
U − L

2z

)2

,

where L and U are the assessed values of the α/2-quantile and the Table 2 of the statistical tables
contains quantiles for the
standard normal distribution.

(1− α/2)-quantile of θ, respectively, and z is the (1− α/2)-quantile of
N(0, 1).

15 For some likelihoods, a prior can be used which produces a posterior
distribution of the same form as the prior distribution. Such a prior is called
a conjugate prior. When a conjugate prior is used, the prior to posterior
Bayesian analysis is called a conjugate analysis. Some standard conjugate
analyses are summarized in the table below; x is an observation on a random
variable X , and x represents the mean of a sample of n observations on X .

Name Prior Data Posterior

beta/binomial θ ∼ Beta(a, b) X ∼ B(n, θ) Beta(a+ x, b+ n− x)

gamma/Poisson µ ∼ Gamma(a, b) X ∼ Poisson(µ) Gamma(a+ nx, b+ n)

normal/normal µ ∼ N(a, b) X ∼ N(µ, σ2) N

(
σ2a+ nbx

σ2 + nb
,

σ2b

σ2 + nb

)
where σ2 is known

16 Prior to posterior Bayesian analyses may be undertaken using
noninformative or improper uniform priors. Some standard analyses are
summarized in the table below; x is an observation on a random variable X ,
and x represents the mean of a sample of n observations on X .

Name Prior Data Posterior

uniform/binomial θ ∼ U(0, 1) X ∼ B(n, θ) Beta(1 + x, 1 + n− x)

uniform/Poisson µ ∼ improper uniform X ∼ Poisson(µ) Gamma(nx, n)
on [0,∞)

uniform/normal µ ∼ improper uniform X ∼ N(µ, σ2) N

(
x,
σ2

n

)
on (−∞,∞) where σ2 is known

17 A plot of the posterior distribution for a parameter θ is always helpful. The
location of the posterior distribution may be summarized conveniently by the
posterior mode or the posterior median. The spread of the posterior
distribution may be summarized by the posterior variance. Probabilities
calculated from posterior distributions may also be of interest.

18 An interval (l, u) is a 100(1−α)% credible interval for a parameter θ if
the posterior probability that l ≤ θ ≤ u, given the data, is equal to 1− α:

P (l ≤ θ ≤ u|data) = 1− α.

The probability 1− α is the credibility level of the interval.

19 A Highest Posterior Density (HPD) credible interval for a posterior
distribution with a single mode contains the most likely values of θ. An
equal-tailed credible interval satisfies

P (θ < l|data) = P (θ > u|data) = 1
2α.
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Bayesian inference via simulation

20 When a conjugate analysis does not seem appropriate, or when the
mathematics involved in using a conjugate analysis is complicated,
simulation can be used to obtain information about the posterior
distribution. Simulation is particularly useful in non-conjugate Bayesian
analyses or when functions of parameters are of interest.

21 Stochastic simulation, or Monte Carlo (MC) simulation, involves
mimicking the properties of a distribution by ‘randomly’ sampling values
from the distribution.

22 The Monte Carlo standard error of a mean obtained by simulation, or
the MC error, relates to the variability of the simulation, and may be
reduced by increasing N , the number of values sampled in the simulation.
The 5% rule of thumb states that N should be large enough to ensure that
the Monte Carlo standard error of the mean is less than 5% of the sample
standard deviation.

23 To make inferences about a parameter φ which is some function g(θ) of a
parameter θ that can readily be simulated, proceed as follows.

$ Simulate N values of θ, denoted θ1, . . . , θN .

$ Apply the function g to each of the simulated values, to give values
φ1 = g(θ1), . . . , φn = g(θn).

$ Use these values to make inferences about φ.

24 For a Bayesian analysis involving more than one unknown parameter,
interest lies in the joint distribution and in the marginal distributions of the
parameters.

$ The joint distribution f(θ, φ) of two unknown parameters θ and φ
describes how the two parameters vary together, and may be represented
by a scatterplot of simulated pairs of values (θ1, φ1), . . . , (θN , φN ).

$ The marginal distributions are the distributions of θ and φ
considered separately, and may be estimated using histograms of the
simulated values θ1, . . . , θN and φ1, . . . , φN , respectively.

$ The mean of the marginal distribution of a parameter can be estimated
by the sample mean of the simulated values of the parameter; quantiles
of the distribution can be estimated using sample quantiles.

Markov chain Monte Carlo

25 A Markov chain is a sequence of random variables X1, X2, . . . for which the
distribution of Xk+1 depends only on the value of Xk and not on any earlier
values in the chain. A realization of a Markov chain may be represented
using a trace plot, that is, a plot in which the values of the Markov chain
are plotted against the iteration number. Under suitable conditions, the
values in a realization of a Markov chain will eventually settle down, or
converge, to an equilibrium distribution.

26 Markov chain Monte Carlo (MCMC) is a technique for obtaining a
posterior distribution of interest as the equilibrium distribution of a Markov
chain. It is particularly useful when conjugate analyses are not available.

27 Convergence of a Markov chain can be assessed graphically by running the
Markov chain several times from different initial values and checking that the
realizations eventually overlap. The period before they overlap is the
burn-in period. Inferences can be based on all samples obtained after the
burn-in period.

28 Samples obtained using MCMC are dependent. However, the MC error can
still be estimated and the 5% rule of thumb used to estimate the sample size
to be used.
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6 Statistical tables

Table 1 Probabilities for the standard normal distribution, P (Z ≤ z)

z 0 1 2 3 4 5 6 7 8 9

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Example: If Z ∼ N(0, 1), then P (Z ≤ 0.62) = 0.7324.
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Table 2 Quantiles for the standard normal distribution, P (Z ≤ qα) = α

α qα α qα α qα α qα

0.50 0.00000 0.67 0.4399 0.84 0.9945 0.955 1.695
0.51 0.02507 0.68 0.4677 0.85 1.036 0.960 1.751
0.52 0.05015 0.69 0.4959 0.86 1.080 0.965 1.812
0.53 0.07527 0.70 0.5244 0.87 1.126 0.970 1.881
0.54 0.1004 0.71 0.5534 0.88 1.175 0.975 1.960
0.55 0.1257 0.72 0.5828 0.89 1.227 0.980 2.054
0.56 0.1510 0.73 0.6128 0.90 1.282 0.985 2.170
0.57 0.1764 0.74 0.6433 0.905 1.311 0.990 2.326
0.58 0.2019 0.75 0.6745 0.910 1.341 0.991 2.366
0.59 0.2275 0.76 0.7063 0.915 1.372 0.992 2.409
0.60 0.2533 0.77 0.7388 0.920 1.405 0.993 2.457
0.61 0.2793 0.78 0.7722 0.925 1.440 0.994 2.512
0.62 0.3055 0.79 0.8064 0.930 1.476 0.995 2.576
0.63 0.3319 0.80 0.8416 0.935 1.514 0.996 2.652
0.64 0.3585 0.81 0.8779 0.940 1.555 0.997 2.748
0.65 0.3853 0.82 0.9154 0.945 1.598 0.998 2.878
0.66 0.4125 0.83 0.9542 0.950 1.645 0.999 3.090

Example: If Z ∼ N(0, 1), then P (Z ≤ 1.645) = 0.950, so q0.95 = 1.645.

Table 3 Quantiles for χ2-distributions

df 0.1 0.3 0.5 0.6 0.7 0.8 0.9 0.95 0.975 0.99 0.995 0.999

1 0.016 0.148 0.455 0.708 1.07 1.64 2.71 3.84 5.02 6.63 7.88 10.83
2 0.211 0.713 1.39 1.83 2.41 3.22 4.61 5.99 7.38 9.21 10.60 13.82
3 0.584 1.42 2.37 2.95 3.66 4.64 6.25 7.81 9.35 11.34 12.84 16.27
4 1.06 2.19 3.36 4.04 4.88 5.99 7.78 9.49 11.14 13.28 14.86 18.47
5 1.61 3.00 4.35 5.13 6.06 7.29 9.24 11.07 12.83 15.09 16.75 20.52
6 2.20 3.83 5.35 6.21 7.23 8.56 10.64 12.59 14.45 16.81 18.55 22.46
7 2.83 4.67 6.35 7.28 8.38 9.80 12.02 14.07 16.01 18.48 20.28 24.32
8 3.49 5.53 7.34 8.35 9.52 11.03 13.36 15.51 17.53 20.09 21.95 26.12
9 4.17 6.39 8.34 9.41 10.66 12.24 14.68 16.92 19.02 21.67 23.59 27.88

10 4.87 7.27 9.34 10.47 11.78 13.44 15.99 18.31 20.48 23.21 25.19 29.59
11 5.58 8.15 10.34 11.53 12.90 14.63 17.28 19.68 21.92 24.72 26.76 31.26
12 6.30 9.03 11.34 12.58 14.01 15.81 18.55 21.03 23.34 26.22 28.30 32.91
13 7.04 9.93 12.34 13.64 15.12 16.98 19.81 22.36 24.74 27.69 29.82 34.53
14 7.79 10.82 13.34 14.69 16.22 18.15 21.06 23.68 26.12 29.14 31.32 36.12
15 8.55 11.72 14.34 15.73 17.32 19.31 22.31 25.00 27.49 30.58 32.80 37.70
16 9.31 12.62 15.34 16.78 18.42 20.47 23.54 26.30 28.85 32.00 34.27 39.25
17 10.09 13.53 16.34 17.82 19.51 21.61 24.77 27.59 30.19 33.41 35.72 40.79
18 10.86 14.44 17.34 18.87 20.60 22.76 25.99 28.87 31.53 34.81 37.16 42.31
19 11.65 15.35 18.34 19.91 21.69 23.90 27.20 30.14 32.85 36.19 38.58 43.82
20 12.44 16.27 19.34 20.95 22.77 25.04 28.41 31.41 34.17 37.57 40.00 45.31
21 13.24 17.18 20.34 21.99 23.86 26.17 29.62 32.67 35.48 38.93 41.40 46.80
22 14.04 18.10 21.34 23.03 24.94 27.30 30.81 33.92 36.78 40.29 42.80 48.27
23 14.85 19.02 22.34 24.07 26.02 28.43 32.01 35.17 38.08 41.64 44.18 49.73
24 15.66 19.94 23.34 25.11 27.10 29.55 33.20 36.42 39.36 42.98 45.56 51.18
25 16.47 20.87 24.34 26.14 28.17 30.68 34.38 37.65 40.65 44.31 46.93 52.62
26 17.29 21.79 25.34 27.18 29.25 31.79 35.56 38.89 41.92 45.64 48.29 54.05
27 18.11 22.72 26.34 28.21 30.32 32.91 36.74 40.11 43.19 46.96 49.64 55.48
28 18.94 23.65 27.34 29.25 31.39 34.03 37.92 41.34 44.46 48.28 50.99 56.89
29 19.77 24.58 28.34 30.28 32.46 35.14 39.09 42.56 45.72 49.59 52.34 58.30
30 20.60 25.51 29.34 31.32 33.53 36.25 40.26 43.77 46.98 50.89 53.67 59.70
31 21.43 26.44 30.34 32.35 34.60 37.36 41.42 44.99 48.23 52.19 55.00 61.10
32 22.27 27.37 31.34 33.38 35.66 38.47 42.58 46.19 49.48 53.49 56.33 62.49
33 23.11 28.31 32.34 34.41 36.73 39.57 43.75 47.40 50.73 54.78 57.65 63.87
34 23.95 29.24 33.34 35.44 37.80 40.68 44.90 48.60 51.97 56.06 58.96 65.25
35 24.80 30.18 34.34 36.47 38.86 41.78 46.06 49.80 53.20 57.34 60.27 66.62
36 25.64 31.12 35.34 37.50 39.92 42.88 47.21 51.00 54.44 58.62 61.58 67.99
37 26.49 32.05 36.34 38.53 40.98 43.98 48.36 52.19 55.67 59.89 62.88 69.35
38 27.34 32.99 37.34 39.56 42.05 45.08 49.51 53.38 56.90 61.16 64.18 70.70
39 28.20 33.93 38.34 40.59 43.11 46.17 50.66 54.57 58.12 62.43 65.48 72.05
40 29.05 34.87 39.34 41.62 44.16 47.27 51.81 55.76 59.34 63.69 66.77 73.40

Example: If X ∼ χ2(4), the chi-squared distribution on 4 degrees of freedom (df),
then P (X ≤ 7.78) = 0.9, so q0.9 = 7.78.
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